Exact maximum likelihood parameter estimation of superimposed exponential signals in noise

A unified framework for the exact maximum likelihood estimation of the parameters of superimposed exponential signals in noise, encompassing both the time series and the array problems, is presented. An exact expression for the ML criterion is derived in terms of the linear prediction polynomial of the signal, and an iterative algorithm for the maximization of this criterion is presented. The algorithm is equally applicable in the case of signal coherence in the array problem. Simulation shows the estimator to be capable of providing more accurate frequency estimates than currently existing techniques. The algorithm is similar to those independently derived by Kumaresan et al. In addition to its practical value, the present formulation is used to interpret previous methods such as Prony's, Pisarenko's, and modifications thereof.

[1]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[2]  C. Demeure,et al.  The high-resolution spectrum estimator—A subjective entity , 1984, Proceedings of the IEEE.

[3]  Rajendra Kumar,et al.  A fast algorithm for solving a Toeplitz system of equations , 1983, IEEE Trans. Acoust. Speech Signal Process..

[4]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[5]  Y. Chan,et al.  A parameter estimation approach to estimation of frequencies of sinusoids , 1981 .

[6]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[7]  S. Lawrence Marple Spectral line analysis by Pisarenko and Prony methods , 1979, ICASSP.

[8]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  Arnab K. Shaw,et al.  High resolution bearing estimation without eigen decomposition , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  J. Cadzow,et al.  An Algebraic Approach to Superresolution Array Processing , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[11]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[12]  Steven Kay,et al.  Accurate frequency estimation at low signal-to-noise ratio , 1984 .

[13]  L. Scharf,et al.  A Prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models , 1984, Proceedings of the IEEE.

[14]  T. Ulrych,et al.  Time series modeling and maximum entropy , 1976 .

[15]  James E. Evans,et al.  Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems , 1982 .

[16]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[17]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[18]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[19]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[20]  A. Evans,et al.  Optimal least squares time-domain synthesis of recursive digital filters , 1973 .

[21]  Srdjan S. Stankovic,et al.  Iterative inverse filtering approach to the estimation of frequencies of noisy sinusoids , 1983 .

[22]  Arye Nehorai A minimal parameter adaptive notch filter with constrained poles and zeros , 1985, IEEE Trans. Acoust. Speech Signal Process..

[23]  Yoram Bresler,et al.  Exact maximum likelihood estimation of superimposed exponential signals in noise , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  T. W. Anderson Maximum Likelihood Estimation of Parameters of Autoregressive Processes with Moving Average Residuals and Other Covariance Matrices with Linear Structure , 1975 .

[25]  Thomas Kailath,et al.  Extending the threshold of the eigenstructure methods , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[26]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[27]  Georges Bienvenu,et al.  Adaptivity to background noise spatial coherence for high resolution passive methods , 1980, ICASSP.

[28]  T. W. Anderson Estimation for Autoregressive Moving Average Models in the Time and Frequency Domains , 1977 .