Gradient-extended two-surface damage-plasticity: Micromorphic formulation and numerical aspects

Abstract A regularized gradient-extended damage-plasticity model is discussed which is based on a micromorphic approach in the spirit of Forest (2009). Damage and plasticity are treated as independent but strongly coupled dissipative phenomena by means of a ‘two-surface’ formulation, i.e. by using separate yield and damage functions as well as appropriate loading/unloading conditions. By means of two independent dissipation potentials for plasticity and damage, thermodynamically consistent evolution equations are derived. The model accounts for nonlinear plastic as well as damage hardening. The models' implementation at the local integration point level, both using a local active set search strategy known from multisurface plasticity and a recent approach based on a reformulation of the model equations by means of the Fischer-Burmeister complementarity function, is discussed in detail. It is shown how the model can be implemented into finite elements and the four algorithmically consistent tangent operators are presented which are necessary to obtain quadratic convergence in a global Newton scheme. Various numerical benchmark tests performed in the study nicely indicate the model's ability to deliver mesh-independent results in coupled damage-plasticity finite element simulations.

[1]  Stefanie Reese,et al.  Prediction of springback in sheet forming by a new finite strain model with nonlinear kinematic and isotropic hardening , 2009 .

[2]  Andreas Menzel,et al.  Implementation of numerical integration schemes for the simulation of magnetic SMA constitutive response , 2012 .

[3]  L. J. Sluys,et al.  From continuous to discontinuous failure in a gradient-enhanced continuum damage model , 2003 .

[4]  Klaus Hackl,et al.  Generalized standard media and variational principles in classical and finite strain elastoplasticity , 1997 .

[5]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[6]  R. Borja,et al.  Discrete micromechanics of elastoplastic crystals , 1993 .

[7]  S. Quilici,et al.  Numerical Modeling of Fatigue Crack Growth in Single Crystals Based on Microdamage Theory , 2011 .

[8]  Viggo Tvergaard,et al.  Effects of nonlocal damage in porous plastic solids , 1995 .

[9]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[10]  T. Wierzbicki,et al.  On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing , 2009 .

[11]  Marc G. D. Geers,et al.  Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour , 2003 .

[12]  Milan Jirásek,et al.  Consistent tangent stiffness for nonlocal damage models , 2002 .

[13]  Bob Svendsen,et al.  Local and non-local Gurson-based ductile damage and failure modelling at large deformation , 2003 .

[14]  J. C. D. César de Sá,et al.  Damage driven crack initiation and propagation in ductile metals using XFEM , 2013 .

[15]  Jean-Louis Chaboche,et al.  Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers , 1997 .

[16]  Laura De Lorenzis,et al.  A phase-field model for ductile fracture at finite strains and its experimental verification , 2016 .

[17]  M. J. Ashrafi,et al.  Theoretical and numerical modeling of dense and porous shape memory alloys accounting for coupling effects of plasticity and transformation , 2016 .

[18]  Thomas Böhlke,et al.  Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures , 2015 .

[19]  G. Nguyen,et al.  A nonlocal coupled damage-plasticity model for the analysis of ductile failure , 2015 .

[20]  T. J. Lu,et al.  An Analytical and Experimental Study of Mixed-Mode Ductile Fracture under Nonproportional Loading , 1992 .

[21]  T. Böhlke,et al.  A gradient plasticity grain boundary yield theory , 2013 .

[22]  K. Saanouni,et al.  Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects , 2013 .

[23]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[24]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[25]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .

[26]  Ted Belytschko,et al.  Continuum Theory for Strain‐Softening , 1984 .

[27]  A. Fischer A Newton-type method for positive-semidefinite linear complementarity problems , 1995 .

[28]  J. Devaux,et al.  Bifurcation Effects in Ductile Metals With Nonlocal Damage , 1994 .

[29]  J. C. Simo,et al.  Non‐smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms , 1988 .

[30]  S. Forest,et al.  Micromorphic vs. Phase-Field Approaches for Gradient Viscoplasticity and Phase Transformations , 2011 .

[31]  Miguel Cervera,et al.  Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique , 2006 .

[32]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[33]  Ted Belytschko,et al.  Wave propagation in a strain-softening bar: Exact solution , 1985 .

[34]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[35]  K. Hackl,et al.  Multiscale modeling of martensitic phase transformations: On the numerical determination of heterogeneous mesostructures within shape-memory alloys induced by precipitates , 2010 .

[36]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[37]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[38]  Mgd Marc Geers,et al.  Strain-based transient-gradient damage model for failure analyses , 1998 .

[39]  J. Hancock,et al.  On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states , 1976 .

[40]  C. Truesdell,et al.  The Non-Linear Field Theories of Mechanics , 1965 .

[41]  S. Reese On the Equivalent of Mixed Element Formulations and the Concept of Reduced Integration in Large Deformation Problems , 2002 .

[42]  Milan Jirásek,et al.  Inelastic Analysis of Structures , 2001 .

[43]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[44]  C. L. Chow,et al.  An anisotropic theory of continuum damage mechanics for ductile fracture , 1987 .

[45]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[46]  K. Saanouni,et al.  On the Anelastic Flow with Damage , 1994 .

[47]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[48]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[49]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[50]  Claudia Comi,et al.  Computational modelling of gradient‐enhanced damage in quasi‐brittle materials , 1999 .

[51]  E. Maire,et al.  Experimental investigation of void coalescence in a dual phase steel using X-ray tomography , 2013 .

[52]  Klaus Hackl,et al.  A regularization framework for damage–plasticity models via gradient enhancement of the free energy , 2011 .

[53]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[54]  Mark Kachanov,et al.  Elastic Solids with Many Cracks and Related Problems , 1993 .

[55]  Shawn A. Chester,et al.  A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands , 2012 .

[56]  J. Hutchinson,et al.  On localization and void coalescence as a precursor to ductile fracture , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[57]  George Z. Voyiadjis,et al.  A damage cyclic plasticity model for metal matrix composites , 1996 .

[58]  S. Reese,et al.  Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage , 2014 .

[59]  A. Raina,et al.  Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory , 2016 .

[60]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[61]  Mgd Marc Geers,et al.  On coupled gradient-dependent plasticity and damage theories with a view to localization analysis , 1999 .

[62]  Andrew McBride,et al.  Well-posedness of a model of strain gradient plasticity for plastically irrotational materials , 2008 .

[63]  Christian Miehe,et al.  Aspects of computational rate-independent crystal plasticity , 1997 .

[64]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[65]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[66]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[67]  Stefanie Reese,et al.  On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo‐mechanical coupling in plane strain problems , 2003 .

[68]  Jaedal Jung,et al.  A three dimensional augmented finite element for modeling arbitrary cracking in solids , 2016, International Journal of Fracture.

[69]  Y. N. Rabotnov,et al.  Paper 68: On the Equation of State of Creep , 1963 .

[70]  S. Reese On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity , 2005 .

[71]  Martin Schmidt-Baldassari,et al.  Numerical concepts for rate-independent single crystal plasticity , 2003 .

[72]  Peter Grassl,et al.  Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries , 2014, 1406.3381.

[73]  A. Wineman,et al.  The role of curing stresses in subsequent response, damage and failure of textile polymer composites , 2013 .

[74]  Stefanie Reese,et al.  On the modelling of non‐linear kinematic hardening at finite strains with application to springback—Comparison of time integration algorithms , 2008 .

[75]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[76]  Milan Jirásek,et al.  On mesh bias of local damage models for concrete , 2004 .

[77]  Andreas Menzel,et al.  Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity , 2011 .

[78]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[79]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[80]  F. D. Sciarra Hardening plasticity with nonlocal strain damage , 2012 .

[81]  B. Nedjar,et al.  Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects , 2001 .

[82]  Zdenek P. Bazant,et al.  Why Continuum Damage is Nonlocal: Micromechanics Arguments , 1991 .

[83]  J. Marigo,et al.  Gradient damage models coupled with plasticity: Variational formulation and main properties , 2015 .

[84]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[85]  F. Auricchio,et al.  An experimental, theoretical and numerical investigation of shape memory polymers , 2015 .

[86]  F. Auricchio,et al.  Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation , 2014 .

[87]  Milan Jirásek,et al.  Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models , 2008 .

[88]  M. Kuna,et al.  Simulation of crack propagation using a gradient-enriched ductile damage model based on dilatational strain , 2012 .

[89]  S. Reese,et al.  Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming , 2010 .

[90]  Alexander Mielke,et al.  A Mathematical Framework for Generalized Standard Materials in the Rate-Independent Case , 2006 .

[91]  A. Fischer A special newton-type optimization method , 1992 .

[92]  M. Kuna,et al.  A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model , 2013, International Journal of Fracture.

[93]  Pablo J. Sánchez,et al.  A phase-field/gradient damage model for brittle fracture in elastic–plastic solids , 2015 .

[94]  Geralf Hütter,et al.  Simulation of ductile crack initiation and propagation by means of a non-local Gurson-model , 2013 .

[95]  C. F. Niordson,et al.  On fracture in finite strain gradient plasticity , 2016, 1711.01081.

[96]  Jidong Kang,et al.  Void growth and coalescence in model materials investigated by high-resolution X-ray microtomography , 2013, International Journal of Fracture.

[97]  S. Reese,et al.  A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation , 2012 .

[98]  Klaus Hackl,et al.  A Method for Gradient Enhancement of Continuum Damage Models , 2008 .

[99]  Angelo Simone,et al.  A simplified implementation of a gradient-enhanced damage model with transient length scale effects , 2013 .

[100]  Fischer Andreas On the local superlinear convergence of a Newton-type method for LCP under weak conditions , 1995 .

[101]  R. Borja,et al.  Discrete micromechanics of elastoplastic crystals in the finite deformation range , 2014 .

[102]  R. Peerlings,et al.  Discrete crack modelling of ductile fracture driven by non‐local softening plasticity , 2006 .

[103]  G. Voyiadjis,et al.  Coupled gradient damage – Viscoplasticty model for ductile materials: Phase field approach , 2016 .

[104]  F. Donze,et al.  Incrementally non‐linear plasticity applied to rock joint modelling , 2013 .

[105]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[106]  K. Hackl,et al.  A micromechanical model for martensitic phase‐transformations in shape‐memory alloys based on energy‐relaxation , 2009 .

[107]  T. Belytschko,et al.  Localization limiters in transient problems , 1988 .

[108]  S. Forest Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[109]  M. Geers Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework , 2004 .

[110]  Nicolas Cordero,et al.  Micromorphic approach to single crystal plasticity and damage , 2011 .

[111]  Rhj Ron Peerlings,et al.  Gradient‐enhanced damage modelling of concrete fracture , 1998 .