Strain smoothing for compressible and nearly-incompressible finite elasticity

Strain smoothing is introduced in the framework of nearly-incompressible finite elasticity.The method alleviates shear locking.The method is expressed in the primal displacement unknowns only.The method is robust when using severely distorted meshes.Bubble functions are introduced in the displacement space to ensure stability. We present a robust and efficient form of the smoothed finite element method (S-FEM) to simulate hyperelastic bodies with compressible and nearly-incompressible neo-Hookean behaviour. The resulting method is stable, free from volumetric locking and robust on highly distorted meshes. To ensure inf-sup stability of our method we add a cubic bubble function to each element. The weak form for the smoothed hyperelastic problem is derived analogously to that of smoothed linear elastic problem. Smoothed strains and smoothed deformation gradients are evaluated on sub-domains selected by either edge information (edge-based S-FEM, ES-FEM) or nodal information (node-based S-FEM, NS-FEM). Numerical examples are shown that demonstrate the efficiency and reliability of the proposed approach in the nearly-incompressible limit and on highly distorted meshes. We conclude that, strain smoothing is at least as accurate and stable, as the MINI element, for an equivalent problem size.

[1]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids , 2009 .

[2]  H. Nguyen-Xuan,et al.  A smoothed finite element method for plate analysis , 2008 .

[3]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[4]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[5]  M. Destrade,et al.  On the rectilinear shear of compressible and incompressible elastic slabs , 2010, 1301.4932.

[6]  Sundararajan Natarajan,et al.  Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework , 2010, 1107.4732.

[7]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[8]  Kjell Magne Mathisen,et al.  Isogeometric analysis of finite deformation nearly incompressible solids , 2011 .

[9]  Guirong Liu,et al.  Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems , 2010 .

[10]  J. E. Adkins,et al.  Large elastic deformations and non-linear continuum mechanics , 1962 .

[11]  Gui-Rong Liu,et al.  Upper and lower bounds for natural frequencies: A property of the smoothed finite element methods , 2010 .

[12]  Stéphane Bordas,et al.  A cell‐based smoothed finite element method for kinematic limit analysis , 2010 .

[13]  K. Y. Lam,et al.  Selective smoothed finite element method , 2007 .

[14]  T. Rabczuk,et al.  Discontinuous modelling of shear bands using adaptive meshfree methods , 2008 .

[15]  C. A. Saracibar,et al.  A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations , 2002 .

[16]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[17]  Christian Duriez,et al.  Real-time simulation of contact and cutting of heterogeneous soft-tissues , 2014, Medical Image Anal..

[18]  J. Bonet,et al.  Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications , 2001 .

[19]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[20]  K. Y. Dai,et al.  Smoothed Finite Element Method , 2022 .

[21]  B. Moran,et al.  Stabilized conforming nodal integration in the natural‐element method , 2004 .

[22]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[23]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[24]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[25]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[26]  K. Y. Dai,et al.  Theoretical aspects of the smoothed finite element method (SFEM) , 2007 .

[27]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[28]  Hung Nguyen-Xuan,et al.  On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) , 2009 .

[29]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[30]  Hui-Ping Wang,et al.  An enhanced cell‐based smoothed finite element method for the analysis of Reissner–Mindlin plate bending problems involving distorted mesh , 2013 .

[31]  Guirong Liu,et al.  An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems , 2013 .

[32]  Sundararajan Natarajan,et al.  On the approximation in the smoothed finite element method (SFEM) , 2010, ArXiv.

[33]  A. Goriely,et al.  Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Guirong Liu,et al.  A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems , 2009 .

[35]  T. Rabczuk,et al.  Semi-implicit finite strain constitutive integration of porous plasticity models , 2015 .

[36]  Hung Nguyen-Xuan,et al.  A theoretical study on the smoothed FEM (S‐FEM) models: Properties, accuracy and convergence rates , 2010 .

[37]  Xiangyang Cui,et al.  A Smoothed Finite Element Method (SFEM) for Linear and Geometrically Nonlinear Analysis of Plates and Shells , 2008 .

[38]  Timon Rabczuk,et al.  Finite strain fracture of plates and shells with configurational forces and edge rotations , 2013 .

[39]  A. Goriely . Numerical simulation of shear and the Poynting effects by the finite element method: An applicatio , 2013 .

[40]  K. Y. Dai,et al.  An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .

[41]  K. Daia,et al.  Free and forced vibration analysis using the smoothed finite element method ( SFEM ) , 2007 .

[42]  M. Koishi,et al.  A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers , 2012 .

[43]  G. R. Liu,et al.  On Smoothed Finite Element Methods , 2010 .

[44]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[45]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[46]  Hung Nguyen-Xuan,et al.  An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes , 2010, J. Comput. Appl. Math..

[47]  R. L. Taylor Isogeometric analysis of nearly incompressible solids , 2011 .

[48]  T. Belytschko,et al.  A simplified mesh‐free method for shear bands with cohesive surfaces , 2007 .

[49]  Bishnu P. Lamichhane,et al.  Inf–sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity , 2008 .

[50]  H. Nguyen-Xuan,et al.  On stability, convergence and accuracy of bES-FEM and bFS-FEM for nearly incompressible elasticity , 2013 .

[51]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[52]  Antonio Huerta,et al.  Pseudo-divergence-free element free Galerkin method for incompressible fluid flow , 2004 .

[53]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[54]  Timon Rabczuk,et al.  Finite strain fracture of 2D problems with injected anisotropic softening elements , 2014 .

[55]  Karol Miller,et al.  Non-locking Tetrahedral Finite Element for Surgical Simulation. , 2009, Communications in numerical methods in engineering.

[56]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[57]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[58]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[59]  Hung Nguyen-Xuan,et al.  An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates , 2010 .

[60]  Guirong Liu,et al.  Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC‐PIM) , 2008 .

[61]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .

[62]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[63]  Stéphane Bordas,et al.  Strain smoothing in FEM and XFEM , 2010 .