Pressure boundary conditions for computing incompressible flows with SPH
暂无分享,去创建一个
[1] S. Miyama,et al. Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .
[2] Mihai Basa,et al. Permeable and non‐reflecting boundary conditions in SPH , 2009 .
[3] J. Monaghan,et al. Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .
[4] Bertrand Alessandrini,et al. An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..
[5] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[6] F. Durst,et al. Accurate computations of the laminar flow past a square cylinder based on two different methods : lattice-Boltzmann and finite-volume , 2000 .
[7] A. Colagrossi,et al. Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .
[8] Rui Xu,et al. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..
[9] L. Libersky,et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .
[10] S. Cummins,et al. An SPH Projection Method , 1999 .
[11] N. Quinlan,et al. Moving Boundary Problems in the Finite Volume Particle Method , 2008 .
[12] Frans N. van de Vosse,et al. An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .
[13] Rui Xu,et al. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..
[14] Chunfeng Zhou,et al. Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing , 2006, J. Comput. Phys..
[15] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[16] Alexandre M. Tartakovsky,et al. Pore-scale simulations of drainage of heterogeneous and anisotropic porous media , 2007 .
[17] R. Sani,et al. On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .
[18] Cornelis Vuik,et al. On deflation and singular symmetric positive semi-definite matrices , 2007 .
[19] J. K. Chen,et al. An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .
[20] L. Lucy. A numerical approach to the testing of the fission hypothesis. , 1977 .
[21] L. Libersky,et al. Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .
[22] Afzal Suleman,et al. SPH with the multiple boundary tangent method , 2009 .
[23] G. Oger,et al. Two-dimensional SPH simulations of wedge water entries , 2006, J. Comput. Phys..
[24] J. Monaghan,et al. SPH elastic dynamics , 2001 .
[25] J. Monaghan. SPH without a Tensile Instability , 2000 .
[26] J. Monaghan. Smoothed particle hydrodynamics , 2005 .
[27] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[28] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[29] J. Morris,et al. Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .
[30] N. Amanifard,et al. PRESENTING A MODIFIED SPH ALGORITHM FOR NUMERICAL STUDIES OF FLUID-STRUCTURE INTERACTION PROBLEMS , 2007 .
[31] Siamak Kazemzadeh Hannani,et al. A fully explicit three‐step SPH algorithm for simulation of non‐Newtonian fluid flow , 2007 .