Pressure boundary conditions for computing incompressible flows with SPH

In Smoothed Particle Hydrodynamics (SPH) methods for fluid flow, incompressibility may be imposed by a projection method with an artificial homogeneous Neumann boundary condition for the pressure Poisson equation. This is often inconsistent with physical conditions at solid walls and inflow and outflow boundaries. For this reason open-boundary flows have rarely been computed using SPH. In this work, we demonstrate that the artificial pressure boundary condition produces a numerical boundary layer that compromises the solution near boundaries. We resolve this problem by utilizing a ''rotational pressure-correction scheme'' with a consistent pressure boundary condition that relates the normal pressure gradient to the local vorticity. We show that this scheme computes the pressure and velocity accurately near open boundaries and solid objects, and extends the scope of SPH simulation beyond the usual periodic boundary conditions.

[1]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[2]  Mihai Basa,et al.  Permeable and non‐reflecting boundary conditions in SPH , 2009 .

[3]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[4]  Bertrand Alessandrini,et al.  An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..

[5]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[6]  F. Durst,et al.  Accurate computations of the laminar flow past a square cylinder based on two different methods : lattice-Boltzmann and finite-volume , 2000 .

[7]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[8]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[9]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[10]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[11]  N. Quinlan,et al.  Moving Boundary Problems in the Finite Volume Particle Method , 2008 .

[12]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[13]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[14]  Chunfeng Zhou,et al.  Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing , 2006, J. Comput. Phys..

[15]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[16]  Alexandre M. Tartakovsky,et al.  Pore-scale simulations of drainage of heterogeneous and anisotropic porous media , 2007 .

[17]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[18]  Cornelis Vuik,et al.  On deflation and singular symmetric positive semi-definite matrices , 2007 .

[19]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[20]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[21]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[22]  Afzal Suleman,et al.  SPH with the multiple boundary tangent method , 2009 .

[23]  G. Oger,et al.  Two-dimensional SPH simulations of wedge water entries , 2006, J. Comput. Phys..

[24]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[25]  J. Monaghan SPH without a Tensile Instability , 2000 .

[26]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[27]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[28]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[29]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[30]  N. Amanifard,et al.  PRESENTING A MODIFIED SPH ALGORITHM FOR NUMERICAL STUDIES OF FLUID-STRUCTURE INTERACTION PROBLEMS , 2007 .

[31]  Siamak Kazemzadeh Hannani,et al.  A fully explicit three‐step SPH algorithm for simulation of non‐Newtonian fluid flow , 2007 .