SnO2 (n)-NiO (p) composite nanowebs: Gas sensing properties and sensing mechanisms

Abstract Aiming to optimize SnO2-NiO nanocomposite sensors for detection of hazardous gases, a series of xSnO2-(1-x) NiO composite nanowebs with different compositions (x = 0.1, 0.3, 0.5, 0.7, and 0.9) were synthesized using an electrospinning process. The formation of long and continuous SnO2-NiO nanowebs was verified. Depending on the composition, xSnO2-(1-x) NiO composite nanowebs‎ showed either n-type (SnO2-rich composition) or p-type (NiO-rich composition) gas-sensing behavior. The best sensing performance was obtained for the nanowebs of 0.5SnO2-0.5NiO. The presence of plenty of p-n heterojunctions along with the high oxygen adsorption property of NiO were the main reasons for the high response to the NO2 and C6H6 gases at this optimized composition.

[1]  D. H. Nguyen,et al.  Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas. , 2011, Chemistry.

[2]  Weiguo Song,et al.  Hydrothermal Synthesis and Structural Characterization of NiO/SnO2 Composites and Hydrogen Sensing Properties , 2015 .

[3]  Myung Sik Choi,et al.  Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors , 2017 .

[4]  M. Rumyantseva,et al.  Effect of Au and NiO catalysts on the NO2 sensing properties of nanocrystalline SnO2 , 2010 .

[5]  T. S. Natarajan,et al.  Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning , 2013 .

[6]  S. S. Kim,et al.  H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers , 2012 .

[7]  Jae-Hun Kim,et al.  Optimization and gas sensing mechanism of n-SnO2-p-Co3O4 composite nanofibers , 2017 .

[8]  Jaeyoung Park,et al.  Nanocomposite ZnO–SnO2 Nanofibers Synthesized by Electrospinning Method , 2010, Nanoscale research letters.

[9]  Sang-Eon Park,et al.  Synthesis of TiO2 nanorods decorated with NiO nanoparticles and their acetone sensing properties , 2016 .

[10]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[11]  Alireza Nezamzadeh-Ejhieh,et al.  Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. , 2017, Journal of colloid and interface science.

[12]  Jae-Hun Kim,et al.  Improvement of Toluene-Sensing Performance of SnO2 Nanofibers by Pt Functionalization , 2016, Sensors.

[13]  T. Hyeon,et al.  Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self‐Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction , 2005 .

[14]  G. Lu,et al.  Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties , 2016 .

[15]  Xinyu Xue,et al.  High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor , 2016 .

[16]  L. Kong,et al.  Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1−x)α-Fe2O3 ethanol sensors , 2000 .

[17]  Xuhui Sun,et al.  Electrospun nanowebs of NiO/SnO 2 p-n heterojunctions for enhanced gas sensing , 2016 .

[18]  J. Park,et al.  A model for the enhancement of gas sensing properties in SnO2–ZnO core–shell nanofibres , 2011 .

[19]  R. Arat,et al.  Production of PEG grafted PAN copolymers and their electrospun nanowebs as novel thermal energy storage materials , 2016 .

[20]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[21]  Myung Sik Choi,et al.  Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties , 2017 .

[22]  Guizhi Li,et al.  An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis , 2014 .

[23]  H. Alamdari,et al.  CO sensitive nanocrystalline LaCoO3 perovskite sensor prepared by high energy ball milling , 2010 .

[24]  Sun-Woo Choi,et al.  NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles , 2013 .

[25]  J. Wang,et al.  1D NiO-SnO2 Heterojunction Nanofibers as Acetone Sensor , 2016 .

[26]  S. S. Kim,et al.  Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure , 2013 .

[27]  Myung Sik Choi,et al.  Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs , 2017 .

[28]  Jun Zhang,et al.  High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors , 2015 .

[29]  S. C. Gadkari,et al.  RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature , 2017 .

[30]  A. Rashidi,et al.  Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide , 2015 .

[31]  Li Liu,et al.  Enhancement Ethanol Sensing Properties of NiO–SnO2 Nanofibers , 2011 .

[32]  S. S. Kim,et al.  One-pot synthesis of Au-loaded SnO2 nanofibers and their gas sensing properties , 2014 .

[33]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[34]  M. Hu,et al.  Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor , 2016 .

[35]  Jae Kyung Lee,et al.  Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors , 2017, Electronic Materials Letters.

[36]  J. Park,et al.  Growth of Nanograins in Electrospun ZnO Nanofibers , 2009 .

[37]  A. Mirzaei,et al.  Promotional effect of nitric acid treatment on co sensing properties of SnO2/MWCNT nanocomposites , 2016 .

[38]  J. Park,et al.  Short Note: Electrical transport properties of ZnO nanofibers , 2013 .

[39]  N. Yamazoe,et al.  Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. , 2014, ACS applied materials & interfaces.

[40]  K. Kim,et al.  Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres , 2012 .

[41]  P. Chu,et al.  Gas sensing properties of NiO/SnO2 heterojunction thin film , 2017 .

[42]  Jae-Hun Kim,et al.  Synthesis and Selective Sensing Properties of rGO/Metal-Coloaded SnO2 Nanofibers , 2017, Journal of Electronic Materials.

[43]  Jae-Hun Kim,et al.  Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets , 2015 .

[44]  S. S. Kim,et al.  An approach to detecting a reducing gas by radial modulation of electron-depleted shells in core–shell nanofibers , 2013 .

[45]  Y. Long,et al.  Electrospun PEDOT:PSS/PVP Nanofibers for CO Gas Sensing with Quartz Crystal Microbalance Technique , 2016 .

[46]  J. Park,et al.  Growth behavior and sensing properties of nanograins in CuO nanofibers , 2011 .

[47]  Xiaojun Wu,et al.  Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study , 2008 .

[48]  S. S. Kim,et al.  Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets. , 2015, ACS applied materials & interfaces.

[49]  Giovanni Neri,et al.  Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review , 2016 .

[50]  J. Park,et al.  Synthesis of NiO nanofibers and their gas sensing properties. , 2012, Journal of nanoscience and nanotechnology.

[51]  S. S. Kim,et al.  Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers , 2015 .

[52]  Jian Jiang,et al.  Preparation and gas-sensing property of ultra-fine NiO/SnO2 nano-particles , 2012 .

[53]  S. S. Kim,et al.  Electrospun nanofibers of CuOSnO2 nanocomposite as semiconductor gas sensors for H2S detection , 2013 .

[54]  Li Liu,et al.  High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C , 2011 .

[55]  Soo‐Hyun Kim,et al.  Chemiresistive sensing behavior of SnO2 (n)-Cu2O (p) core-shell nanowires. , 2015, ACS applied materials & interfaces.