Insecticidal Activity of Four Lignans Isolated from Phryma leptostachya

A new lignan (T4) and three known lignans (T1, T2, and T3) were isolated from the methanol extract of the roots of Phryma leptostachya using bioassay-guided method, and their structures were identified as phrymarolin I (T1), II (T2), haedoxan A (T3), and methyl 4-((6a-acetoxy-4-(6-methoxybenzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4–c]furan-1-yl)oxy)-1-hydroxy-2,2-dimethoxy-5-oxocyclopent-3-ene-1-carboxylate (T4) byNMR and ESI-MS spectral data. Bioassay results revealed that haedoxan A exhibited remarkably high insecticidal activity against Mythimna separata with a stomach toxicity LC50 value of 17.06 mg/L and a topical toxicity LC50 value of 1123.14 mg/L at 24 h, respectively. Phrymarolin I and compound T4 also showed some stomach toxicity against M. separata with KD50 values of 3450.21 mg/L at 4 h and 2807.10 mg/L at 8 h, respectively. In addition, phrymarolin I and haedoxan A exhibited some stomach toxicity against Plutella xylostella with an LC50 value of 1432.05 and 857.28 mg/L at 48 h, respectively. In conclusion, this study demonstrated that lignans from P. leptostachya are promising as a novel class of insecticides or insecticide lead compounds for developing botanical pesticides.

[1]  Ahmed A. A. Aioub,et al.  Antifungal activity of pregnane glycosides isolated from Periploca sepium root barks against various phytopathogenic fungi , 2019, Industrial Crops and Products.

[2]  J. Hilbert,et al.  Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici , 2018, Industrial Crops and Products.

[3]  T. Richard,et al.  Stilbenes from grapevine root: a promising natural insecticide against Leptinotarsa decemlineata , 2018, Journal of Pest Science.

[4]  O. Franco,et al.  The rescue of botanical insecticides: A bioinspiration for new niches and needs. , 2017, Pesticide biochemistry and physiology.

[5]  B. Biais,et al.  Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae , 2017, Journal of Pest Science.

[6]  W. Wenjun,et al.  Ultrastructure and Na +-K +-ATPase , Ca 2 +-ATPase activities on parietal muscle of Mythimna separata larvae treated by haedoxane E , 2017 .

[7]  Yuzhe Du,et al.  Insight into the Mode of Action of Haedoxan A from Phryma leptostachya , 2016, Toxins.

[8]  Zhaonong Hu,et al.  Synthesis and Larvicidal Activity against Culex pipiens pallens of New Triazole Derivatives of Phrymarolin from Phryma leptostachya L. , 2013, International journal of molecular sciences.

[9]  Z. Ji,et al.  A new lignan from Phryma leptostachya , 2013, Chemistry of Natural Compounds.

[10]  C. Lim,et al.  Anti-Inflammatory, Antioxidant, Anti-Angiogenic and Skin Whitening Activities of Phryma leptostachya var. asiatica Hara Extract , 2013, Biomolecules & therapeutics.

[11]  Chunmei Chen,et al.  Lignans from Phryma leptostachya L. , 2012 .

[12]  I. Park,et al.  Larvicidal activity of medicinal plant extracts and lignan identified in Phryma leptostachya var. asiatica roots against housefly (Musca domestica L.) , 2012, Parasitology Research.

[13]  Zhaonong Hu,et al.  Larvicidal activity of lignans from Phryma leptostachya L. against Culex pipiens pallens , 2012, Parasitology Research.

[14]  Shaoli Wang,et al.  Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). , 2010, Pest management science.

[15]  Y. Endo,et al.  Thermonasty of young main stems of Phryma leptostachya (Phrymaceae) , 2006, Journal of Plant Research.

[16]  Y. Ahn,et al.  Larvicidal activity of lignans identified in Phryma leptostachya Var. asiatica roots against three mosquito species. , 2005, Journal of agricultural and food chemistry.

[17]  Y. Kho,et al.  Brine shrimp lethality of the compounds fromPhryma leptostachya L , 2002, Archives of pharmacal research.

[18]  F. Ishibashi,et al.  Synthesis and Absolute Configuration of the Insecticidal Sesquilignan (+)‐Haedoxan A. , 1999 .

[19]  F. Ishibashi,et al.  Synthesis and absolute configuration of the insecticidal sesquilignan (+)-HAEDOXAN a in honour of professor G. H. Neil Towers 75th birthday , 1998 .

[20]  Y. Nakamura,et al.  Enantioselective Synthesis of a (+)-(2R, 3R)-1,4-Benzodioxane-7-carbaldehyde Derivative, a Key Intermediate in the Total Synthesis of Haedoxan Analogs. , 1998, Bioscience, biotechnology, and biochemistry.

[21]  Taniguchi Eiji,et al.  Synthesis of (+)-(2S, 3S)-Benzodioxane , 1997 .

[22]  Y. Shuto,et al.  Total Synthesis of (+)-Phrymarolin I from (+)-Malic Acid , 1997 .

[23]  谷口 栄二,et al.  A New Lignan Having A Chromene Moiety:Synthesis of Haedoxan Analogue with Precocene I Skeleton , 1996 .

[24]  S. Chiu,et al.  Response of Five Insect Species to a Botanical Insecticide, Rhodojaponin III , 1993 .

[25]  S. Yamauchi,et al.  Synthesis and Insecticidal Activity of Sesquilignan Analogs with 2-Alkyl-6-methoxy-3-(3,4-methylenedioxyphenyl)-1,4-benzodioxanyl Group , 1992 .

[26]  S. Yamauchi,et al.  Influence on Insecticidal Activity of the 3-(3, 4-Methylenedioxyphenyl) Group in the 1, 4-Benzodioxanyl Moiety of Haedoxan , 1992 .

[27]  Wenjun Wu,et al.  Celangulins II, III, and IV: New Insecticidal Sesquiterpenoids from Celastrus angulatus , 1992 .

[28]  S. Yamauchi,et al.  Synthesis and Insecticidal Activity of Haedoxan Analogs. Part IV. Effect on Insecticidal Activity of Substituents at the 1,4-Benzodioxanyl Moiety of Haedoxan. , 1992 .

[29]  A. Nishio,et al.  Structure of the Novel Insecticidal Sesquilignan, Haedoxan A , 1989 .

[30]  Y. Oshima,et al.  Structure of Phrymarolin-II , 1972 .

[31]  Y. Oshima,et al.  Phrymarolin-I, a Novel Lignan from Phryma leptostachya L. , 1972 .