The perspective-based observational tunnels method: A new method of multidimensional data visualization

The article describes a new unique method of multidimensional data visualization. It has been developed as modified observational tunnels method, which was previously known and used many times. The modification consists in supplementing the observational tunnels method used for visualization of multidimensional data with the concept of perspective. In this way, the orientation and navigation in multidimensional space are largely facilitated. The differences in effects of observational tunnels method and perspective-based observational tunnels method have been presented. The effectiveness of the new visualization method has been compared with selected four well-known methods of multidimensional data visualization: parallel coordinates, orthogonal projection, principal component analysis, and multidimensional scaling. The research revealed that the perspective-based observational tunnels method sometimes makes it possible to obtain information about significant features of analyzed data even when other methods selected for comparative studies are not able to show it. This article includes a presentation of the views of 5-dimensional data obtained from the print recognition process, which allowed the author to state that the features chosen for the development of spatial features are, in this case, sufficient for the correct recognition process. The previously published ranking presenting seven different methods of multidimensional data visualization was supplemented with the perspective-based observational tunnels method. This ranking was conducted using 7-dimensional data describing different types of coal. Thus, it was shown that, in this case, the presented method constitutes the efficient tool among other qualitative visualization analysis methods.

[1]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[2]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[3]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[4]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[5]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[6]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[7]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[8]  Abhijit Chatterjee,et al.  Visualization in linear programming using parallel coordinates , 1993, Pattern Recognit..

[9]  Dariusz Jamroz,et al.  APPLICATION OF MULTI-PARAMETER DATA VISUALIZATION BY MEANS OF AUTOASSOCIATIVE NEURAL NETWORKS TO EVALUATE CLASSIFICATION POSSIBILITIES OF VARIOUS COAL TYPES , 2014 .

[10]  D. Cook,et al.  Interactive visualization of hierarchical clusters using MDS and MST , 2000 .

[11]  Dariusz Jamróz Application of Multidimensional Data Visualization in Creation of Pattern Recognition Systems , 2013, ICMMI.

[12]  Tomasz Niedoba,et al.  VISUALIZATION OF MULTIDIMENSIONAL DATA IN PURPOSE OF QUALITATIVE CLASSIFICATION OF VARIOUS TYPES OF COAL / WIZUALIZACJA WIELOWYMIAROWYCH DANYCH W CELU KLASYFIKACJI JAKOŚCIOWEJ RÓŻNYCH TYPÓW WĘGLA , 2013 .

[13]  Chris Aldrich,et al.  Visualization of transformed multivariate data sets with autoassociative neural networks , 1998, Pattern Recognit. Lett..

[14]  Shuo-Yan Chou,et al.  Cluster identification with parallel coordinates , 1999, Pattern Recognit. Lett..

[15]  Tomasz Niedoba,et al.  Multi-parameter data visualization by means of principal component analysis (PCA) in qualitative evaluation of various coal types , 2014 .

[16]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[17]  Anil K. Jain,et al.  A nonlinear projection method based on Kohonen's topology preserving maps , 1992, IEEE Trans. Neural Networks.

[18]  Weihua Li,et al.  Recursive PCA for Adaptive Process Monitoring , 1999 .

[19]  T. Niedoba,et al.  Application of the observational tunnels method to select a set of features sufficient to identify a type of coal , 2014 .

[20]  Gary Klein,et al.  New graphics as computerized displays for human information processing , 1989, IEEE Trans. Syst. Man Cybern..

[21]  Tomasz Niedoba,et al.  Application of Multidimensional Data Visualization by Means of Self-Organizing Kohonen Maps to Evaluate Classification Possibilities of Various Coal Types / Zastosowanie Wizualizacji Wielowymiarowych Danych Za Pomocą Sieci Kohonena Do Oceny Możliwości Klasyfikacji Różnych Typów Węgla , 2015 .

[22]  Daniel Cohen-Or,et al.  RMAP: a system for visualizing data in multidimensional relevance space , 1999, The Visual Computer.

[23]  Tomasz Niedoba,et al.  COMPARISON OF SELECTED METHODS OF MULTI-PARAMETER DATA VISUALIZATION USED FOR CLASSIFICATION OF COALS , 2015 .

[24]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[25]  Dariusz Jamroz,et al.  Application of Multidimensional Scaling to Classification of Various Types of Coal/Zastosowanie Skalowania Wielowymiarowego Do Klasyfikacji Różnych Typów Węgli , 2014 .

[26]  W. H. Carter,et al.  Interpreting plots of a multidimensional dose-response surface in a parallel coordinate system. , 1990, Biometrics.

[27]  Dariusz Jamróz Multidimensional Labyrinth - Multidimensional Virtual Reality , 2009, ICMMI.

[28]  Tomasz Niedoba,et al.  Application of Relevance Maps in Multidimensional Classification of Coal Types / Zastosowanie Map Odniesienia W Wielowymiarowej Klasyfikacji Typów Węgla , 2015 .