Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems

A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh resolution down to the finest scales and multiscale methods capable of capturing the large scale components of the solution on macroscopic meshes are needed. Recently, the finite element heterogeneous multiscale method (FE-HMM) has been proposed for such problems, based on a macroscopic solver with effective data recovered from the solution of micro problems on sampling domains at quadrature points of a macroscopic mesh. Departing from the approach used in the FE-HMM, we show that interpolation techniques based on the reduced basis methodology (an offline-online strategy) allow one to design an efficient numerical method relying only on a small number of accurately computed micro solutions. This new method, called the reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) is significantly more efficient than the FE-HMM for high order macroscopic discretizations and for three-dimensional problems, when the repeated computation of micro problems over the whole computational domain is expensive. A priori error estimates of the RB-FE-HMM are derived. Numerical computations for two and three dimensional problems illustrate the applicability and efficiency of the numerical method.

[1]  Assyr Abdulle,et al.  A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .

[2]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[3]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[4]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[5]  A. Noor Recent advances in reduction methods for nonlinear problems. [in structural mechanics , 1981 .

[6]  Assyr Abdulle,et al.  A short and versatile finite element multiscale code for homogenization problems , 2009 .

[7]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[8]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[9]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[10]  Multiscale Finite Element Methods for Elliptic Equations , 2010 .

[11]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[12]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[13]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[14]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[15]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[16]  Ngoc Cuong Nguyen,et al.  A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales , 2008, J. Comput. Phys..

[17]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[18]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[19]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[20]  H. Miura,et al.  An approximate analysis technique for design calculations , 1971 .

[21]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[22]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[23]  Sébastien Boyaval,et al.  Mathematical modelling and numerical simulation in materials science , 2009 .

[24]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[25]  Assyr Abdulle,et al.  A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .

[26]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[27]  Pingbing Ming,et al.  Heterogeneous multiscale finite element method with novel numerical integration schemes , 2010 .

[28]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[29]  Assyr Abdulle Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..

[30]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[31]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[32]  Assyr Abdulle,et al.  Erratum to ''A short and versatile finite element multiscale code for homogenization problems" (Comput. Methods Appl. Mech. Engrg. 198 (2009) 2839-2859) , 2010 .

[33]  Assyr Abdulle,et al.  The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods , 2011 .

[34]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[35]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[36]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[37]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[38]  Sébastien Boyaval Reduced-Basis Approach for Homogenization beyond the Periodic Setting , 2008, Multiscale Model. Simul..

[39]  Assyr Abdulle,et al.  Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..

[40]  J. Tinsley Oden,et al.  MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..

[41]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.