Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems
暂无分享,去创建一个
Assyr Abdulle | Yun Bai | A. Abdulle | Y. Bai | Yun Bai
[1] Assyr Abdulle,et al. A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .
[2] A. Patera,et al. A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .
[3] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[4] J. Hesthaven,et al. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .
[5] A. Noor. Recent advances in reduction methods for nonlinear problems. [in structural mechanics , 1981 .
[6] Assyr Abdulle,et al. A short and versatile finite element multiscale code for homogenization problems , 2009 .
[7] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[8] D. Rovas,et al. Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .
[9] Assyr Abdulle,et al. Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .
[10] Multiscale Finite Element Methods for Elliptic Equations , 2010 .
[11] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[12] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..
[13] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[14] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[15] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[16] Ngoc Cuong Nguyen,et al. A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales , 2008, J. Comput. Phys..
[17] E. Rank,et al. A multiscale finite-element method , 1997 .
[18] Assyr Abdulle,et al. On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..
[19] Werner C. Rheinboldt,et al. On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .
[20] H. Miura,et al. An approximate analysis technique for design calculations , 1971 .
[21] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[22] V. G. Kouznetsova,et al. Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..
[23] Sébastien Boyaval,et al. Mathematical modelling and numerical simulation in materials science , 2009 .
[24] N. Nguyen,et al. A general multipurpose interpolation procedure: the magic points , 2008 .
[25] Assyr Abdulle,et al. A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .
[26] Assyr Abdulle,et al. Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..
[27] Pingbing Ming,et al. Heterogeneous multiscale finite element method with novel numerical integration schemes , 2010 .
[28] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[29] Assyr Abdulle. Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..
[30] A. Patera,et al. A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .
[31] Assyr Abdulle,et al. The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .
[32] Assyr Abdulle,et al. Erratum to ''A short and versatile finite element multiscale code for homogenization problems" (Comput. Methods Appl. Mech. Engrg. 198 (2009) 2839-2859) , 2010 .
[33] Assyr Abdulle,et al. The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods , 2011 .
[34] Christoph Schwab,et al. High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.
[35] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[36] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[37] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[38] Sébastien Boyaval. Reduced-Basis Approach for Homogenization beyond the Periodic Setting , 2008, Multiscale Model. Simul..
[39] Assyr Abdulle,et al. Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..
[40] J. Tinsley Oden,et al. MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..
[41] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.