Unravelling charge dynamic effects in photocatalytic CO2 reduction over TiO2: Anatase vs P25

[1]  Qingkun Kong,et al.  Unraveling the Role of Interface in Photogenerated Charge Separation at the Anatase/Rutile Heterophase Junction , 2022, The Journal of Physical Chemistry C.

[2]  J. Durrant,et al.  Towards the Improvement of Methane Production in Co2 Photoreduction Using Bi2wo6/Tio2 Heterostructures , 2022, SSRN Electronic Journal.

[3]  S. Giménez,et al.  Laser-Reduced BiVO4 for Enhanced Photoelectrochemical Water Splitting. , 2022, ACS applied materials & interfaces.

[4]  J. Fermoso,et al.  The role of the surface acidic/basic centers and redox sites on TiO2 in the photocatalytic CO2 reduction , 2021, Applied Catalysis B: Environmental.

[5]  J. Marugán,et al.  Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis , 2021, Advanced Functional Materials.

[6]  M. Barawi,et al.  Conjugated Porous Polymers: Ground‐Breaking Materials for Solar Energy Conversion , 2021, Advanced Energy Materials.

[7]  H. Yamashita,et al.  A closer look inside TiO2 (P25) photocatalytic CO2/HCO3− reduction with water. Methane rate and selectivity enhancements , 2021 .

[8]  S. Giménez,et al.  Electrophoretic deposition of antimonene for photoelectrochemical applications , 2020 .

[9]  F. Fresno,et al.  Hybrids Based on BOPHY-Conjugated Porous Polymers as Photocatalysts for Hydrogen Production: Insight into the Charge Transfer Pathway , 2020 .

[10]  P. Kasamechonchung,et al.  Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol-Gel Method , 2020 .

[11]  J. Bisquert,et al.  Intensity-Modulated Photocurrent Spectroscopy for Solar Energy Conversion Devices: What Does a Negative Value Mean? , 2020 .

[12]  Marta Liras,et al.  Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. , 2019, Chemical Society reviews.

[13]  F. Fabregat‐Santiago,et al.  TiO2 Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics , 2019, ACS omega.

[14]  J. Pan,et al.  Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview , 2019, Catalysis Today.

[15]  F. Fresno,et al.  Mechanistic View of the Main Current Issues in Photocatalytic CO2 Reduction. , 2018, The journal of physical chemistry letters.

[16]  Muhammad Tahir,et al.  A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency , 2018, Journal of CO2 Utilization.

[17]  Jacek K. Stolarczyk,et al.  Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures , 2018 .

[18]  Qing Wang,et al.  Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles? , 2018 .

[19]  Kuan-Jiuh Lin,et al.  Plasmon-Enhanced Photocurrent using Gold Nanoparticles on a Three-Dimensional TiO2 Nanowire-Web Electrode , 2017, Scientific Reports.

[20]  V. A. L. P. O'Shea,et al.  Hierarchical TiO2 nanofibres as photocatalyst for CO2 reduction: Influence of morphology and phase composition on catalytic activity , 2016 .

[21]  J. Strunk,et al.  Identification and exclusion of intermediates of photocatalytic CO₂ reduction on TiO₂ under conditions of highest purity. , 2016, Physical chemistry chemical physics : PCCP.

[22]  I. Parkin,et al.  Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. , 2016, The journal of physical chemistry. A.

[23]  N. Lewis,et al.  The frontiers of energy , 2016, Nature Energy.

[24]  J. Durrant,et al.  Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4 , 2015 .

[25]  A. Machado,et al.  Charge carrier dynamics and photocatalytic behavior of TiO2 nanopowders submitted to hydrothermal or conventional heat treatment , 2015 .

[26]  Y. Weng,et al.  Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2 , 2015, Scientific Reports.

[27]  Jiaguo Yu,et al.  Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. , 2015, Chemical communications.

[28]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[29]  N. Serpone,et al.  Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. , 2014, Physical chemistry chemical physics : PCCP.

[30]  Yi-sheng Liu,et al.  Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. , 2014, Chemical reviews.

[31]  Zebao Rui,et al.  Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion , 2014 .

[32]  V. V. Naumov,et al.  Room temperature photoluminescence of anatase and rutile TiO2 powders , 2014 .

[33]  W. Jaegermann,et al.  Energy Band Alignment between Anatase and Rutile TiO2 , 2013 .

[34]  Y. Lan,et al.  Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications , 2013 .

[35]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[36]  H. Nagai,et al.  Absorption spectra and photocurrent densities of Ag nanoparticle/TiO2 composite thin films with various amounts of Ag , 2013, Journal of Materials Science.

[37]  D. Serrano,et al.  Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors , 2013 .

[38]  A. Kudo,et al.  Electron–Phonon Coupling Dynamics at Oxygen Evolution Sites of Visible-Light-Driven Photocatalyst: Bismuth Vanadate , 2013 .

[39]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[40]  T. Frauenheim,et al.  Band Lineup and Charge Carrier Separation in Mixed Rutile-Anatase Systems , 2011 .

[41]  B. Ohtani,et al.  What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test , 2010 .

[42]  A. Furube,et al.  Transient absorption spectra of nanocrystalline TiO2 films at high excitation density , 2010 .

[43]  G. Mul,et al.  Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? , 2010, Journal of the American Chemical Society.

[44]  Christine Ogilvie Robichaud,et al.  Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. , 2009, Environmental science & technology.

[45]  D. Klug,et al.  Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. , 2008, Journal of the American Chemical Society.

[46]  B. Ohtani Preparing Articles on Photocatalysis : Beyond the Illusions, Misconceptions, and Speculation , 2008 .

[47]  Xiujian Zhao,et al.  The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering , 2007 .

[48]  Gang Xiong,et al.  Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with Rutile Nanocrystals , 2007 .

[49]  Halimaton Hamdan,et al.  Hydrophobic fluorinated TiO2–ZrO2 as catalyst in epoxidation of 1-octene with aqueous hydrogen peroxide , 2006 .

[50]  H. Fu,et al.  Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity , 2006 .

[51]  Tijana Rajh,et al.  Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. , 2005, The journal of physical chemistry. B.

[52]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[53]  Michio Matsumura,et al.  Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases , 2001 .

[54]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[55]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[56]  M. Liras,et al.  Unravelling nanostructured Nb-doped TiO2 dual band behaviour in smart windows by in-situ spectroscopies , 2022, Journal of Materials Chemistry A.

[57]  V. A. L. P. O'Shea,et al.  Current Challenges of CO2 Photocatalytic Reduction Over Semiconductors Using Sunlight , 2015 .

[58]  Giovanni Nicoletti,et al.  A technical and environmental comparison between hydrogen and some fossil fuels , 2015 .

[59]  J. Ryu,et al.  Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. , 2008, Environmental science & technology.