New functional form of the dependence of rotational and centrifugal distortional parameters of the water molecule on the bending vibration v2

[1]  V. Tyuterev,et al.  Generalized contact transformations of a hamiltonian with a quasi-degenerate zero-order approximation. Application to accidental vibration- rotation resonances in molecules , 1980 .

[2]  J. Flaud,et al.  Line positions and intensities in the ? 2 band of H 2 16 O , 1976 .

[3]  J. Watson,et al.  Calculated sextic centrifugal distortion constants of polyatomic molecules , 1976 .

[4]  J. Flaud,et al.  The interacting states (030), (110), and (011) of H216O , 1976 .

[5]  J. Maillard,et al.  Ground state molecular constants of 12C16O , 1975 .

[6]  P. Bunker,et al.  The effective rotation-bending Hamiltonian of a triatomic molecule, and its application to extreme centrifugal distortion in the water molecule , 1974 .

[7]  I. Mills,et al.  Microwave spectra and centrifugal distortion constants of oxetane , 1974 .

[8]  J. Flaud,et al.  The interacting states (020), (100), and (001) of H216O , 1974 .

[9]  J. Flaud,et al.  The 2v 2, v 1 and v 3 bands of H2 16O , 1973 .

[10]  J. Flaud,et al.  The 3ν2, band of H2O16 , 1973 .

[11]  J. T. Hougen,et al.  The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration , 1970 .

[12]  J. Watson Determination of Centrifugal Distortion Coefficients of Asymmetric‐Top Molecules , 1967 .

[13]  D. M. Dennison The Infra-Red Spectra of Polyatomic Molecules. Part II , 1940 .

[14]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[15]  C. Camy‐Peyret,et al.  The 4ν2 band of H216O , 1980 .