Odd Yao-Yao Graphs are Not Spanners

It is a long standing open problem whether Yao-Yao graphs YY_{k} are all spanners [Li et al. 2002]. Bauer and Damian [Bauer and Damian, 2012] showed that all YY_{6k} for k >= 6 are spanners. Li and Zhan [Li and Zhan, 2016] generalized their result and proved that all even Yao-Yao graphs YY_{2k} are spanners (for k >= 42). However, their technique cannot be extended to odd Yao-Yao graphs, and whether they are spanners are still elusive. In this paper, we show that, surprisingly, for any integer k >= 1, there exist odd Yao-Yao graph YY_{2k+1} instances, which are not spanners.

[1]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .

[2]  Nicolas Bonichon,et al.  Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces , 2010, WG.

[3]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[4]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[5]  Prosenjit Bose,et al.  On the Spanning Ratio of Theta-Graphs , 2013, WADS.

[6]  YU WANG,et al.  Distributed Spanners with Bounded Degree for Wireless Ad Hoc Networks , 2003, Int. J. Found. Comput. Sci..

[7]  Christian Schindelhauer,et al.  Spanners, Weak Spanners, and Power Spanners for Wireless Networks , 2004, ISAAC.

[8]  Xiang-Yang Li Wireless Ad Hoc and Sensor Networks: Theory and Applications , 2008 .

[9]  El Molla,et al.  Yao spanners for wireless ad hoc networks , 2009 .

[10]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[11]  Prosenjit Bose,et al.  On the Stretch Factor of the Theta-4 Graph , 2013, WADS.

[12]  Ge Xia,et al.  On Certain Geometric Properties of the Yao-Yao Graphs , 2012, COCOA.

[13]  Christian Scheideler,et al.  On local algorithms for topology control and routing in ad hoc networks , 2003, SPAA '03.

[14]  Mirela Damian,et al.  An Infinite Class of Sparse-Yao Spanners , 2013, SODA.

[15]  Mirela Damian A Simple Yao-Yao-Based Spanner of Bounded Degree , 2008, ArXiv.

[16]  Mirela Damian,et al.  Improved bounds on the stretch factor of Y4 , 2017, Comput. Geom..

[17]  Giri Narasimhan,et al.  Approximating Geometric Bottleneck Shortest Paths , 2003, STACS.

[18]  Michiel H. M. Smid,et al.  π/2-Angle Yao Graphs are Spanners , 2012, Int. J. Comput. Geom. Appl..

[19]  Prosenjit Bose,et al.  The θ5-graph is a spanner , 2015, Comput. Geom..

[20]  Tamás Lukovszki,et al.  Distributed Maintenance of Resource Efficient Wireless Network Topologies (Distinguished Paper) , 2002, Euro-Par.

[21]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[22]  Xiang-Yang Li,et al.  Power efficient and sparse spanner for wireless ad hoc networks , 2001, Proceedings Tenth International Conference on Computer Communications and Networks (Cat. No.01EX495).

[23]  Houda Labiod Wireless Ad Hoc and Sensor Networks , 2007 .

[24]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[25]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[26]  Ge Xia,et al.  New and Improved Spanning Ratios for Yao Graphs , 2014, Symposium on Computational Geometry.

[27]  Christian Schindelhauer,et al.  Geometric spanners with applications in wireless networks , 2007, Comput. Geom..

[28]  L. K. Jones,et al.  Strong Connectivity in Directional Nearest-Neighbor Graphs , 1981 .

[29]  Xiang-Yang Li,et al.  Sparse power efficient topology for wireless networks , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[30]  Wei Zhan,et al.  Almost All Even Yao-Yao Graphs Are Spanners , 2016, ESA.

[31]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[32]  David Eppstein Beta-skeletons have unbounded dilation , 2002, Comput. Geom..