Periodic Solutions and Slow Manifolds

After reviewing a number of results from geometric singular perturbation theory, we give an example of a theorem for periodic solutions in a slow manifold. This is illustrated by examples involving the van der Pol-equation and a modified logistic equation. Regarding nonhyperbolic transitions we discuss a four-dimensional relaxation oscillation and also canard-like solutions emerging from the modified logistic equation with sign-alternating growth rates.

[1]  A complete analysis of a model nonlinear singular perturbation problem having a continuous locus of singular points , 1981 .

[2]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[3]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[4]  N. Levinson,et al.  Periodic Solutions of Singularly Perturbed Systems , 1955 .

[5]  T. Bakri On the Modified logistic equation , 2007, Int. J. Bifurc. Chaos.

[6]  Peter Szmolyan,et al.  Extending slow manifolds near transcritical and pitchfork singularities , 2001 .

[7]  F. Verhulst Methods and applications of singular perturbations , 2005 .

[8]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[9]  F. Verhulst,et al.  Autoparametric resonance of relaxation oscillations , 2005 .

[10]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[11]  V. I. Arnol'd,et al.  Dynamical Systems V , 1994 .

[12]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[13]  Robert E. O'Malley,et al.  Analyzing Multiscale Phenomena Using Singular Perturbation Methods , 1999 .

[14]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[15]  P. Szmolyana,et al.  Relaxation oscillations in R 3 , 2004 .

[16]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[17]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[18]  Yuri A. Kuznetsov,et al.  Homoclinic bifurcations in slow-fast second order systems , 1995 .