Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential

A parametrization for silicon is presented that is based on the second-generation reactive empirical bondorder REBO formalism Brenner, Shenderova, Harrison, Stuart, Ni, and Sinnott J. Phys.: Condens. Matter 14, 783 2002 . Because it shares the same analytic form as Brenner’s second-generation REBO, this new potential is a step toward a single potential that can model many atom systems that contain C, Si, and H, where bond breaking and bond making are important. The widespread use of Brenner’s REBO potential, its ability to model both zero-Kelvin elastic constants of diamond and the temperature dependence of the elastic constants, and the existence of parameters for many atom types were the motivating factors for obtaining this parametrization for Si. While Si-C-H classical bond-order potentials do exist, they are based on Brenner’s original formalism. This new parametrization is validated by examining the structure and stability of a large number of crystalline silicon structures, by examining the relaxation energies of point defects, the energies of silicon surfaces, the effects of adatoms on surface energies, and the structures of both liquid silicon and amorphous silicon. Finally, the elastic constants of diamond-cubic and amorphous silicon between 0 and 1100 K are calculated with this new parametrization and compared to values calculated using a previously published potential.

[1]  Haydn N. G. Wadley,et al.  Bond-order potential for silicon , 2007 .

[2]  J. Keinonen,et al.  Comparison of silicon potentials for cluster bombardment simulations , 2007 .

[3]  N. Bernstein,et al.  Structural model of amorphous silicon annealed with tight binding , 2006 .

[4]  J. Schall,et al.  Expressions for the stress and elasticity tensors for angle-dependent potentials. , 2006, The Journal of chemical physics.

[5]  J. Harrison,et al.  Elastic constants of diamond from molecular dynamics simulations , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Haydn N. G. Wadley,et al.  Analytic bond-order potential for the gallium arsenide system , 2006 .

[7]  S. Solares,et al.  Density Functional Theory Study of the Geometry, Energetics, and Reconstruction Process of Si(111) Surfaces , 2005 .

[8]  P. Liu,et al.  Structures and stability of defect-free multiwalled carbon toroidal rings , 2005 .

[9]  T. Arias,et al.  Modeling a suspended nanotube oscillator. , 2004, Nano letters.

[10]  V. Crespi,et al.  Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object. , 2004, Physical review letters.

[11]  Susan B. Sinnott,et al.  A reactive empirical bond order (REBO) potential for hydrocarbon oxygen interactions , 2004 .

[12]  D. Graves,et al.  Improved interatomic potentials for silicon-fluorine and silicon-chlorine. , 2004, The Journal of chemical physics.

[13]  J. Harrison,et al.  The Effects of Film Structure and Surface Hydrogen on the Properties of Amorphous Carbon Films , 2003 .

[14]  J. Pablo,et al.  Computer Simulation of the Mechanical Properties of Amorphous Polymer Nanostructures , 2003 .

[15]  Juan J. de Pablo,et al.  Improved simulation method for the calculation of the elastic constants of crystalline and amorphous systems using strain fluctuations. , 2003 .

[16]  J. Pablo,et al.  Local elastic constants in thin films of an fcc crystal , 2002, cond-mat/0210265.

[17]  Carlo Sbraccia,et al.  Modified XB potential for simulating interactions of organic molecules with Si surfaces , 2002 .

[18]  J. Harrison,et al.  Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. , 2002, Journal of the American Chemical Society.

[19]  Kai Nordlund,et al.  Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon , 2002 .

[20]  David G. Pettifor,et al.  Analytic bond-order potential for open and close-packed phases , 2002 .

[21]  D. Brenner,et al.  Atomistic Simulation of Grain Boundaries, Triple Junctions and Related Disclinations , 2002 .

[22]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[23]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[24]  E. Kaxiras,et al.  Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model , 2000 .

[25]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[26]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[27]  J. L. Robertson,et al.  High-energy x-ray diffraction study of pure amorphous silicon , 1999 .

[28]  Donald W. Brenner,et al.  ATOMISTIC SIMULATIONS OF STRUCTURES AND MECHANICAL PROPERTIES OF (011) TILT GRAIN BOUNDARIES AND THEIR TRIPLE JUNCTIONS IN DIAMOND , 1999 .

[29]  D. Brenner,et al.  ATOMISTIC SIMULATIONS OF STRUCTURES AND MECHANICAL PROPERTIES OF POLYCRYSTALLINE DIAMOND : SYMMETRICAL (001) TILT GRAIN BOUNDARIES , 1999 .

[30]  Stefano de Gironcoli,et al.  Floating bonds and gap states in a-Si and a-Si:H from first principles calculations , 1999, cond-mat/9906223.

[31]  J. L. Robertson,et al.  High Resolution Radial Distribution Function of Pure Amorphous Silicon , 1999 .

[32]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[33]  D. Price,et al.  Structure of supercooled liquid silicon , 1998 .

[34]  E. Kaxiras,et al.  INTERATOMIC POTENTIAL FOR SILICON DEFECTS AND DISORDERED PHASES , 1997, cond-mat/9712058.

[35]  Noam Bernstein,et al.  Nonorthogonal tight-binding Hamiltonians for defects and interfaces in silicon , 1997 .

[36]  Gernot Katzer,et al.  Computational Thermochemistry of Medium-Sized Silicon Hydrides , 1997 .

[37]  Steven G. Louie,et al.  Ab initio study of silicon in the R8 phase , 1997 .

[38]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[39]  Keith Beardmore,et al.  Empirical potentials for C-Si-H systems with application to C60 interactions with Si crystal surfaces , 1996 .

[40]  Colombo,et al.  Calculation of elastic constants in defected and amorphous silicon by quantum simulations. , 1996, Physical review. B, Condensed matter.

[41]  Ishimaru,et al.  Molecular-dynamics study on atomistic structures of liquid silicon. , 1996, Physical review. B, Condensed matter.

[42]  Gusev,et al.  Fluctuation formula for elastic constants. , 1996, Physical review. B, Condensed matter.

[43]  Phillip V. Smith,et al.  Extension of the Brenner empirical interatomic potential to CSiH systems , 1996 .

[44]  Harry A. Atwater,et al.  Empirical interatomic potential for Si-H interactions. , 1995, Physical review. B, Condensed matter.

[45]  J. Poate,et al.  DENSITY OF AMORPHOUS SI , 1994 .

[46]  Wolf,et al.  Crystal instabilities at finite strain. , 1993, Physical review letters.

[47]  Cook,et al.  Comparison of semi-empirical potential functions for silicon and germanium. , 1993, Physical review. B, Condensed matter.

[48]  Ray,et al.  Monte Carlo simulations in the isoenthalpic-isotension-isobaric ensemble. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[49]  H. Balamane,et al.  Comparative study of silicon empirical interatomic potentials. , 1992, Physical review. B, Condensed matter.

[50]  Donald W. Brenner,et al.  Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene , 1991 .

[51]  Car,et al.  Amorphous silicon studied by ab initio molecular dynamics: Preparation, structure, and properties. , 1991, Physical review. B, Condensed matter.

[52]  Broughton,et al.  New low-energy crystal structure for silicon. , 1991, Physical review letters.

[53]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[54]  Fukumoto First-principles pseudopotential calculations of the elastic properties of diamond, Si, and Ge. , 1990, Physical review. B, Condensed matter.

[55]  David Alan Drabold,et al.  Molecular-dynamics simulations of amorphous Si. , 1990, Physical review. B, Condensed matter.

[56]  H. Schaefer,et al.  Disilyne (Si2H2) revisited , 1990 .

[57]  Robbins,et al.  Shear flow near solids: Epitaxial order and flow boundary conditions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[58]  H. C. Andersen,et al.  Interatomic potential for silicon clusters, crystals, and surfaces. , 1990, Physical review. B, Condensed matter.

[59]  D. Pettifor,et al.  New many-body potential for the bond order. , 1989, Physical review letters.

[60]  Nelson,et al.  Semiempirical modified embedded-atom potentials for silicon and germanium. , 1989, Physical review. B, Condensed matter.

[61]  Vanderbilt,et al.  Adatoms on Si(111) and Ge(111) surfaces. , 1989, Physical review. B, Condensed matter.

[62]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[63]  Lannin,et al.  Radial distribution functions of amorphous silicon. , 1989, Physical review. B, Condensed matter.

[64]  Flytzanis,et al.  Potential model for silicon clusters. , 1989, Physical review. B, Condensed matter.

[65]  Das Sarma S,et al.  Simulations of adatom geometries on the Si(111) surface using a model potential. , 1989, Physical review. B, Condensed matter.

[66]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[67]  John R. Ray,et al.  Elastic constants and statistical ensembles in molecular dynamics , 1988 .

[68]  Biegelsen,et al.  Dangling or floating bonds in amorphous silicon? , 1988, Physical review letters.

[69]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[70]  M. Baskes,et al.  Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon. , 1987, Physical review letters.

[71]  Biswas,et al.  New classical models for silicon structural energies. , 1987, Physical review. B, Condensed matter.

[72]  D. Haneman Surfaces of silicon , 1987 .

[73]  Phillips Jc Comment on "Defects in amorphous silicon: A new perspective , 1987 .

[74]  Carlsson,et al.  Energetics of single dangling and floating bonds in amorphous Si. , 1987, Physical review letters.

[75]  Dodson,et al.  Development of a many-body Tersoff-type potential for silicon. , 1987, Physical review. B, Condensed matter.

[76]  Pantelides Defects in amorphous silicon: A new perspective. , 1986, Physical review letters.

[77]  Rudolf M. Tromp,et al.  Scanning tunneling microscopy of Si(001). , 1986, Physical review. B, Condensed matter.

[78]  Northrup Origin of surface states on Si(111)(7 x 7). , 1986, Physical review letters.

[79]  Joannopoulos,et al.  Dangling bond in a-Si:H. , 1986, Physical review letters.

[80]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[81]  Hamers,et al.  Si(001) Dimer structure observed with scanning tunneling microscopy. , 1985, Physical review letters.

[82]  Martin,et al.  Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. , 1985, Physical review. B, Condensed matter.

[83]  Ray,et al.  Molecular dynamics calculation of elastic constants for a crystalline system in equilibrium. , 1985, Physical review. B, Condensed matter.

[84]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[85]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[86]  Winer,et al.  Computer generation of structural models of amorphous Si and Ge. , 1985, Physical review letters.

[87]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[88]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[89]  M. Yin,et al.  Structural theory of graphite and graphitic silicon , 1984 .

[90]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[91]  R. Impey,et al.  Second-order elastic constants for the Lennard-Jones solid , 1984 .

[92]  J. Northrup,et al.  Total energy of the adatom and pyramidal-cluster models for Si(111) , 1984 .

[93]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[94]  Marvin L. Cohen,et al.  THEORY OF STATIC STRUCTURAL PROPERTIES, CRYSTAL STABILITY, AND PHASE TRANSFORMATIONS: APPLICATION TO Si AND Ge , 1982 .

[95]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[96]  Marvin L. Cohen,et al.  Microscopic Theory of the Phase Transformation and Lattice Dynamics of Si , 1980 .

[97]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[98]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[99]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .