Solving a grey project selection scheduling using a simulated shuffled frog leaping algorithm
暂无分享,去创建一个
[1] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[2] Seyed Hossein Iranmanesh,et al. A comprehensive framework for project selection problem under uncertainty and real-world constraints , 2011, Comput. Ind. Eng..
[3] Yi Lin,et al. Grey Information - Theory and Practical Applications , 2005, Advanced Information and Knowledge Processing.
[4] Masoud Rabbani,et al. A multi-objective particle swarm optimization for project selection problem , 2010, Expert Syst. Appl..
[5] Rupak Bhattacharyya,et al. A Grey Theory Based Multiple Attribute Approach for R&D Project Portfolio Selection , 2015 .
[6] Xiaoxia Huang,et al. Project selection and scheduling with uncertain net income and investment cost , 2014, Appl. Math. Comput..
[7] Sasmita Kumari Padhy,et al. Multiprocessor scheduling and neural network training methods using shuffled frog-leaping algorithm , 2015, Comput. Ind. Eng..
[8] Seyed Taghi Akhavan Niaki,et al. Three self-adaptive multi-objective evolutionary algorithms for a triple-objective project scheduling problem , 2015, Comput. Ind. Eng..
[9] Ali Asghar Tofighian,et al. Modeling and solving the project selection and scheduling , 2015, Comput. Ind. Eng..
[10] Min-Rong Chen,et al. Improved Shuffled Frog Leaping Algorithm and its multi-phase model for multi-depot vehicle routing problem , 2014, Expert Syst. Appl..
[11] GuoDong Li,et al. A grey-based decision-making approach to the supplier selection problem , 2007, Math. Comput. Model..
[12] Reza Ghanbari,et al. Optimal selection of project portfolios using reinvestment strategy within a flexible time horizon , 2015, Eur. J. Oper. Res..
[13] Wei-Guo Zhang,et al. Evaluating methods of investment project and optimizing models of portfolio selection in fuzzy uncertainty , 2011, Comput. Ind. Eng..
[14] Angel A. Juan,et al. A simheuristic algorithm for solving the permutation flow shop problem with stochastic processing times , 2014, Simul. Model. Pract. Theory.
[15] Alexi Delgado,et al. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru , 2016, Environ. Model. Softw..
[16] Madjid Tavana,et al. A fuzzy group data envelopment analysis model for high-technology project selection: A case study at NASA , 2013, Comput. Ind. Eng..
[17] A. Mashhadi Kashtiban,et al. Various strategies for partitioning of memeplexes in shuffled frog leaping algorithm , 2009, 2009 14th International CSI Computer Conference.
[18] Mitsuo Gen,et al. An integrated selection and scheduling for disjunctive network problems , 2013, Comput. Ind. Eng..
[19] Hannan Amoozad Mahdiraji,et al. A hybrid model of fuzzy goal programming and grey numbers in continuous project time, cost, and quality tradeoff , 2014 .
[20] Kaveh Khalili Damghani,et al. A decision support system for fuzzy multi-objective multi-period sustainable project selection , 2013, Comput. Ind. Eng..
[21] Sifeng Liu,et al. Grey Information: Theory and Practical Applications (Advanced Information and Knowledge Processing) , 2005 .
[22] Majid Rafiee,et al. A multistage stochastic programming approach in project selection and scheduling , 2014 .
[23] José Ramón San Cristóbal,et al. A Residual Grey Prediction Model for Predicting S-curves in Projects , 2015, CENTERIS/ProjMAN/HCist.
[24] Ronald G. Askin,et al. Project selection, scheduling and resource allocation with time dependent returns , 2009, Eur. J. Oper. Res..