MRI brain tumor segmentation based on improved fuzzy c-means method

This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.