Networks in phylogenetic analysis: new tools for population biology.

Phylogenetic analysis has changed greatly in the past decade, including the more widespread appreciation of the idea that evolutionary histories are not always tree-like, and may, thus, be best represented as reticulated networks rather than as strictly dichotomous trees. Reconstructing such histories in the absence of a bifurcating speciation process is even more difficult than the usual procedure, and a range of alternative strategies have been developed. There seem to be two basic uses for a network model of evolution: the display of real but unobservable evolutionary events (i.e. a hypothesis of the true phylogenetic history), and the display of character conflict within the data itself (i.e. a summary of the data). These two general approaches are briefly reviewed here, and the strengths and weaknesses of the different implementations are compared and contrasted. Each network methodology seems to have limitations in terms of how it responds to increasing complexity (e.g. conflict) in the data, and therefore each is likely to be more appropriate for one of the two uses than for the other. Several examples using parasitological data sets illustrate the uses of networks within the context of population biology.

[1]  L. F. Gondim,et al.  VARIATION OF THE INTERNAL TRANSCRIBED SPACER 1 SEQUENCE WITHIN INDIVIDUAL STRAINS AND AMONG DIFFERENT STRAINS OF NEOSPORA CANINUM , 2004, The Journal of parasitology.

[2]  V Moulton,et al.  Pruned median networks: a technique for reducing the complexity of median networks. , 2001, Molecular phylogenetics and evolution.

[3]  A. Dress,et al.  Weak hierarchies associated with similarity measures--an additive clustering technique. , 1989, Bulletin of mathematical biology.

[4]  J. Hein Reconstructing evolution of sequences subject to recombination using parsimony. , 1990, Mathematical biosciences.

[5]  Michael T. Hallett,et al.  Towards Identifying Lateral Gene Transfer Events , 2002, Pacific Symposium on Biocomputing.

[6]  Vincent Moulton,et al.  Biogeographic interpretation of splits graphs: least squares optimization of branch lengths. , 2005, Systematic biology.

[7]  Philip E. Bourne,et al.  Proceedings of the eighth annual international conference on Research in computational molecular biology , 2004, RECOMB 2004.

[8]  Michael T. Hallett,et al.  Simultaneous identification of duplications and lateral transfers , 2004, RECOMB.

[9]  Peter H. A. Sneath,et al.  Reticulate Evolution in Bacteria and Other Organisms: How Can We Study It? , 2000, J. Classif..

[10]  M D Hendy,et al.  An algorithm for constructing local regions in a phylogenetic network. , 2001, Molecular phylogenetics and evolution.

[11]  A. Templeton,et al.  Root probabilities for intraspecific gene trees under neutral coalescent theory. , 1994, Molecular phylogenetics and evolution.

[12]  D. Morrison,et al.  Genetic diversity assessed by amplified fragment length polymorphism analysis of the parasitic nematode Dictyocaulus viviparus the lungworm of cattle. , 2004, International journal for parasitology.

[13]  V. Nene,et al.  Evidence for two single copy units in Theileria parva ribosomal RNA genes. , 1994, Molecular and biochemical parasitology.

[14]  H. Bandelt,et al.  Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. , 2000, Molecular phylogenetics and evolution.

[15]  G. Roman Reddy,et al.  Sequence microheterogeneity of the three small subunit ribosomal RNA genes of Babesia bigemina: expression in erythrocyte culture , 1991, Nucleic Acids Res..

[16]  Loren H Rieseberg,et al.  Reconstructing patterns of reticulate evolution in plants. , 2004, American journal of botany.

[17]  C. Sing,et al.  A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. , 1992, Genetics.

[18]  Otto Opitz,et al.  Information and Classification , 1993 .

[19]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[20]  A. Rooney Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans. , 2004, Molecular biology and evolution.

[21]  K. Crandall,et al.  Intraspecific gene genealogies: trees grafting into networks. , 2001, Trends in ecology & evolution.

[22]  P. E. Smouse,et al.  Reticulation inside the Species Boundary , 2000, J. Classif..

[23]  Daniel H. Huson,et al.  Estimating phylogenetic trees and networks using SplitsTree 4 , 2004 .

[24]  Peter F. Stevens,et al.  The development of biological systematics : Antoine-Laurent de Jussieu, nature, and the natural system , 1994 .

[25]  B. Dalrymple,et al.  Cloning and characterization of the rRNA genes and flanking regions from Babesia bovis: use of the genes as strain discriminating probes. , 1990, Molecular and biochemical parasitology.

[26]  Hans-Jürgen Bandelt,et al.  A Relational Approach to Split Decomposition , 1993 .

[27]  S. L. Le Blancq,et al.  Ribosomal RNA gene organization in Cryptosporidium parvum. , 1997, Molecular and biochemical parasitology.

[28]  Michael T. Hallett,et al.  Efficient algorithms for lateral gene transfer problems , 2001, RECOMB.

[29]  Vladimir Makarenkov,et al.  From a Phylogenetic Tree to a Reticulated Network , 2004, J. Comput. Biol..

[30]  K. Luton,et al.  rRNA gene sequence heterogeneity amongToxoplasma gondii strains , 2004, Parasitology Research.

[31]  Tandy J. Warnow,et al.  Reconstructing reticulate evolution in species: theory and practice , 2004, RECOMB.

[32]  Pierre Legendre,et al.  Reticulate Evolution:From Bacteria to Philosopher , 2000, J. Classif..

[33]  J. Hein,et al.  Consequences of recombination on traditional phylogenetic analysis. , 2000, Genetics.

[34]  V Moulton,et al.  Likelihood analysis of phylogenetic networks using directed graphical models. , 2000, Molecular biology and evolution.

[35]  R. Lévesque,et al.  Secondary structures and features of the 18S, 5.8S and 26S ribosomal RNAs from the Apicomplexan parasite Toxoplasma gondii. , 1996, Gene.

[36]  David Posada,et al.  RDP2: recombination detection and analysis from sequence alignments , 2005, Bioinform..

[37]  P. H. A. Sneath,et al.  Cladistic Representation of Reticulate Evolution , 1975 .

[38]  Pierre Legendre,et al.  Biological Applications of Reticulation Analysis , 2000, J. Classif..

[39]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[40]  A. Tremblay,et al.  Physical and genetic mapping of cloned ribosomal DNA from Toxoplasma gondii: primary and secondary structure of the 5S gene. , 1992, Gene.

[41]  Tandy J. Warnow,et al.  Towards the Development of Computational Tools for Evaluating Phylogenetic Network Reconstruction Methods , 2002, Pacific Symposium on Biocomputing.

[42]  B. Currie,et al.  Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. , 2004, International journal for parasitology.

[43]  H. Bandelt,et al.  Mitochondrial portraits of human populations using median networks. , 1995, Genetics.

[44]  A. Eyre-Walker,et al.  A reanalysis of the indirect evidence for recombination in human mitochondrial DNA , 2004, Heredity.

[45]  Vladimir Makarenkov,et al.  T-REX: reconstructing and visualizing phylogenetic trees and reticulation networks , 2001, Bioinform..

[46]  Jean-Christophe Aude,et al.  Applications of the Pyramidal Clustering Method to Biological Objects , 1999, Comput. Chem..

[47]  V Moulton,et al.  Recombination analysis using directed graphical models. , 2001, Molecular biology and evolution.

[48]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[49]  François-Joseph Lapointe,et al.  How to Account for Reticulation Events in Phylogenetic Analysis: A Comparison of Distance-Based Methods , 2000, J. Classif..

[50]  Arndt von Haeseler,et al.  Network models for sequence evolution , 1993, Journal of Molecular Evolution.

[51]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[52]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[53]  Vladimir Makarenkov,et al.  Reconstruction of biogeographic and evolutionary networks using reticulograms. , 2002, Systematic biology.

[54]  V. Moulton,et al.  Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.

[55]  H. Bandelt,et al.  Median-joining networks for inferring intraspecific phylogenies. , 1999, Molecular biology and evolution.

[56]  Dan Gusfield,et al.  Optimal, Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination , 2004, J. Bioinform. Comput. Biol..

[57]  J. Hein A heuristic method to reconstruct the history of sequences subject to recombination , 1993, Journal of Molecular Evolution.

[58]  S. Barker,et al.  The mitochondrial 12S gene is a suitable marker of populations of Sarcoptes scabiei from wombats, dogs and humans in Australia , 2002, Parasitology Research.

[59]  L. McDade Hybrids and Phylogenetic Systematics III. Comparison with Distance Methods , 1997 .

[60]  L. McDade HYBRIDS AND PHYLOGENETIC SYSTEMATICS II. THE IMPACT OF HYBRIDS ON CLADISTIC ANALYSIS , 1992, Evolution; international journal of organic evolution.

[61]  Vincent Moulton,et al.  NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks , 2002, WABI.

[62]  Kaizhong Zhang,et al.  Perfect Phylogenetic Networks with Recombination , 2001, J. Comput. Biol..

[63]  A. Dress,et al.  Split decomposition: a new and useful approach to phylogenetic analysis of distance data. , 1992, Molecular phylogenetics and evolution.

[64]  Rita Casadio,et al.  Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.

[65]  Vincent Moulton,et al.  Consensus Networks: A Method for Visualising Incompatibilities in Collections of Trees , 2003, WABI.

[66]  David Bryant,et al.  A classification of consensus methods for phylogenetics , 2001, Bioconsensus.

[67]  Tandy J. Warnow,et al.  Phylogenetic networks: modeling, reconstructibility, and accuracy , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[68]  M. Eigen,et al.  Statistical geometry in sequence space: a method of quantitative comparative sequence analysis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Vincent Moulton,et al.  Spectronet: a package for computing spectra and median networks. , 2002, Applied bioinformatics.

[70]  L. Excoffier,et al.  Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. , 1994, Genetics.

[71]  Luay Nakhleh,et al.  Phylogenetic networks , 2004 .

[72]  S. Xu,et al.  Phylogenetic analysis under reticulate evolution. , 2000, Molecular biology and evolution.