Van der Waals interactions in density functional theory by combining the quantum harmonic oscillator-model with localized Wannier functions.

We present a new scheme to include the van der Waals (vdW) interactions in approximated Density Functional Theory (DFT) by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique. With respect to the recently developed DFT/vdW-WF2 method, also based on Wannier Functions, the new approach is more general, being no longer restricted to the case of well separated interacting fragments. Moreover, it includes higher than pairwise energy contributions, coming from the dipole-dipole coupling among quantum oscillators. The method is successfully applied to the popular S22 molecular database, and also to extended systems, namely graphite and H2 adsorbed on the Cu(111) metal surface (in this case metal screening effects are taken into account). The results are also compared with those obtained by other vdW-corrected DFT schemes.

[1]  Marco Buongiorno Nardelli,et al.  Ab initio transport properties of nanostructures from maximally localized Wannier functions , 2004 .

[2]  Yan Zhao,et al.  Density Functionals for Noncovalent Interaction Energies of Biological Importance. , 2007, Journal of chemical theory and computation.

[3]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[4]  P. Hyldgaard,et al.  Hard numbers on soft matter , 2003 .

[5]  G. Galli,et al.  Nature and strength of interlayer binding in graphite. , 2009, Physical review letters.

[6]  K. Berland,et al.  Benchmarking van der Waals density functionals with experimental data: potential-energy curves for H2 molecules on Cu(111), (100) and (110) surfaces , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Alexandre Tkatchenko,et al.  Seamless and Accurate Modeling of Organic Molecular Materials. , 2013, The journal of physical chemistry letters.

[8]  A. Mostofi,et al.  Calculating dispersion interactions using maximally localized Wannier functions. , 2011, The Journal of chemical physics.

[9]  J. Murray,et al.  Polarizability and volume , 1993 .

[10]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[11]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[12]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[13]  A. Donchev,et al.  Many-body effects of dispersion interaction. , 2006, The Journal of chemical physics.

[14]  B. Berne,et al.  Many‐body dispersion forces of polarizable clusters and liquids , 1992 .

[15]  T. Bučko,et al.  Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids , 2013 .

[16]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[17]  Gianfranco Vidali,et al.  Potentials of physical adsorption , 1991 .

[18]  Alexandre Tkatchenko,et al.  Collective many-body van der Waals interactions in molecular systems , 2012, Proceedings of the National Academy of Sciences.

[19]  A. Ambrosetti,et al.  Inclusion of screening effects in the van der Waals corrected DFT simulation of adsorption processes on metal surfaces , 2013 .

[20]  M. W. Cole,et al.  Van der Waals interactions: accuracy of pair potential approximations. , 2012, The Journal of chemical physics.

[21]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[22]  F. Ancilotto,et al.  van der Waals-Corrected Ab Initio Study of Water Ice–Graphite Interaction , 2013 .

[23]  Edward G Hohenstein,et al.  Basis set consistent revision of the S22 test set of noncovalent interaction energies. , 2010, The Journal of chemical physics.

[24]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[25]  P. Hyldgaard,et al.  Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond , 2007, cond-mat/0703442.

[26]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[27]  Stefano de Gironcoli,et al.  Nonlocal van der Waals density functional made simple and efficient , 2013 .

[28]  A. Tkatchenko,et al.  Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem. , 2012, The Journal of chemical physics.

[29]  Alexandre Tkatchenko,et al.  Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. , 2010, The Journal of chemical physics.

[30]  Maggs,et al.  Electronic fluctuation and cohesion in metals. , 1987, Physical Review Letters.

[31]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[32]  F. Costanzo,et al.  Physisorption, Diffusion, and Chemisorption Pathways of H2 Molecule on Graphene and on (2,2) Carbon Nanotube by First Principles Calculations. , 2012, Journal of chemical theory and computation.

[33]  Valentino R. Cooper,et al.  Van der Waals density functional: an appropriate exchange functional , 2009, 0910.1250.

[34]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[35]  A. Ambrosetti,et al.  Adsorption of Rare-Gas Atoms and Water on Graphite and Graphene by van der Waals-Corrected Density Functional Theory , 2011 .

[36]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in density functional theory using Wannier functions. , 2009, The journal of physical chemistry. A.

[37]  P. L. Silvestrelli,et al.  van der Waals interactions in density functional theory using Wannier functions: Improved C 6 and C 3 coefficients by a different approach , 2012 .

[38]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[39]  K. Berland,et al.  Evaluation of a density functional with account of van der Waals forces using experimental data of H2 physisorption on Cu(111) , 2011, 1109.0726.

[40]  S. Grimme,et al.  Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. , 2007, Organic & biomolecular chemistry.

[41]  Q. Zheng,et al.  Interlayer binding energy of graphite: A mesoscopic determination from deformation , 2012 .

[42]  F. Ancilotto,et al.  Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals corrected density functional theory , 2011, 1112.5056.

[43]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[44]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[45]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[46]  P. Silvestrelli Improvement in hydrogen bond description using van der Waals-corrected DFT: The case of small water clusters , 2009 .

[47]  J F Dobson,et al.  Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. , 2010, Physical review letters.

[48]  Claudia Ambrosch-Draxl,et al.  Van der Waals Interactions Between Organic Adsorbates and at Organic/Inorganic Interfaces , 2010 .

[49]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[50]  F. Toigo,et al.  Van der Waals interactions at surfaces by density functional theory using Wannier functions. , 2008, The Journal of chemical physics.

[51]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[52]  Alexandre Tkatchenko,et al.  Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. , 2012, Physical review letters.

[53]  Pavel Hobza,et al.  Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. , 2010, Chemical reviews.

[54]  M. Persson,et al.  Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  Elsebeth Schröder,et al.  Application of van der Waals density functional to an extended system: adsorption of benzene and naphthalene on graphite. , 2006, Physical review letters.

[56]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in DFT made easy by Wannier functions. , 2007, Physical review letters.