Using non-Gaussian distributions in geostatistical simulations

Parametric geostatistical simulations such as LU decomposition and sequential algorithms do not need Gaussian distributions. It is shown that variogram model reproduction is obtained when Uniform or Dipole distributions are used instead of Gaussian distributions for drawing i. i.d. random values in LU simulation, or for modeling the local conditional probability distributions in sequential simulation. Both algorithms yield simulated values with a marginal normal distribution no matter if Gaussian, Uniform, or Dipole distributions are used. The range of simulated values decreases as the entropy of the probability distribution decreases. Using Gaussian distributions provides a larger range of simulated normal score values than using Uniform or Dipole distributions. This feature has a negligible effect for reproduction of the normal scores variogram model but have a larger impact on the reproduction of the original values variogram. The Uniform or Dipole distributions also produce lesser fluctuations among the variograms of the simulated realizations.