Super-three-dimensional Lithiophilic Cu-based Current Collector for Anode-free Lithium Metal Battery

[1]  Z. Fu,et al.  Growing cuprite nanoparticles on copper current collector toward uniform Li deposition for anode-free lithium batteries , 2023, Applied Surface Science.

[2]  Xiangchen Meng,et al.  Cu-CNTs current collector fabricated by deformation-driven metallurgy for anode-free Li metal batteries , 2022, Carbon.

[3]  Peter J. Weddle,et al.  Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging , 2022, ACS Energy Letters.

[4]  B. Fang,et al.  Modification of Cu Current Collectors for Lithium Metal Batteries – A Review , 2022, Progress in Materials Science.

[5]  Xiangming He,et al.  Li Plating on Alloy with Superior Electro-Mechanical Stability for High Energy Density Anode-Free Batteries , 2022, SSRN Electronic Journal.

[6]  Guoxiu Wang,et al.  Engineering a heteroatom-doped multi-dimensional carbon network for dendrite-free lithium metal anode , 2022, Materials Today Energy.

[7]  Ujwal Shreenag Meda,et al.  Solid Electrolyte Interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances , 2021, Journal of Energy Storage.

[8]  J. Tour,et al.  What Can be Expected from “Anode‐Free” Lithium Metal Batteries? , 2021 .

[9]  C. Jin,et al.  Armed lithium metal anodes with functional skeletons , 2021 .

[10]  Jiaqi Huang,et al.  A review on the failure and regulation of solid electrolyte interphase in lithium batteries , 2020, Journal of Energy Chemistry.

[11]  Jingwei Xiang,et al.  Li2S-based anode-free full batteries with modified Cu current collector , 2020 .

[12]  Kaixue Wang,et al.  Towards ultra-stable lithium metal batteries: Interfacial ionic flux regulated through LiAl LDH-modified polypropylene separator , 2020 .

[13]  J. Dahn,et al.  Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis , 2020 .

[14]  B. Dunn,et al.  Understanding and applying coulombic efficiency in lithium metal batteries , 2020 .

[15]  Chibueze V. Amanchukwu,et al.  Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries , 2020, Nature Energy.

[16]  Betar M. Gallant,et al.  Li2O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium , 2020 .

[17]  Shuying Cheng,et al.  Stable Lithium Metal Anode Achieved by In Situ Grown CuO Nanowire Arrays on Cu Foam , 2020 .

[18]  Xiulin Fan,et al.  Electrolyte design for Li metal-free Li batteries , 2020, Materials Today.

[19]  Yunpeng Jiang,et al.  In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries , 2020, Electrochimica Acta.

[20]  Ming Liu,et al.  Restructured rimous copper foam as robust lithium host , 2020 .

[21]  M. Winter,et al.  Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries , 2020 .

[22]  Jun Lu,et al.  Lithiophilic 3D Porous CuZn Current Collector for Stable Lithium Metal Batteries , 2020, ACS Energy Letters.

[23]  I. Khalakhan,et al.  New Insight into the Gas-Sensing Properties of CuOx Nanowires by Near-Ambient Pressure XPS , 2019 .

[24]  Ji‐Guang Zhang Anode-less , 2019, Nature Energy.

[25]  M. Engelhard,et al.  Role of inorganic surface layer on solid electrolyte interphase evolution at Li-metal anodes. , 2019, ACS applied materials & interfaces.

[26]  X. Qin,et al.  In-Plane Highly Dispersed Cu2O Nanoparticles for Seeded Lithium Deposition. , 2019, Nano letters.

[27]  Yang Zhao,et al.  Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes , 2018, Nano Energy.

[28]  Liquan Chen,et al.  Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode , 2018, ACS Energy Letters.

[29]  Kevin N. Wood,et al.  XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction , 2018, ACS Applied Energy Materials.

[30]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[31]  P. Albertus,et al.  Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries , 2017, Nature Energy.

[32]  Jianming Zheng,et al.  Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries , 2017 .

[33]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[34]  Shaobin Wang,et al.  Preparation and characterization of activated carbons from tobacco stem by chemical activation , 2017, Journal of the Air & Waste Management Association.

[35]  M. Bazant,et al.  Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams , 2017 .

[36]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[37]  Tingzheng Hou,et al.  Lithium Batteries: Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries (Adv. Mater. 15/2016) , 2016 .

[38]  Yong Tian,et al.  Controlled synthesis of mesoporous carbons with tailored morphologies via a “silica-assisted” strategy , 2016, Journal of Materials Science.

[39]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[40]  N. Togasaki,et al.  Enhancement effect of trace H2O on the charge-discharge cycling performance of a Li metal anode , 2014 .

[41]  Zhongliang Hu,et al.  The pyrolysis mechanism of phenol formaldehyde resin , 2012 .

[42]  Ahmed M. Elkhatat,et al.  Advances in Tailoring Resorcinol‐Formaldehyde Organic and Carbon Gels , 2011, Advances in Materials.

[43]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[44]  Z. Yue,et al.  Preparation and characterization of NaOH-activated carbons from phenolic resin , 2006 .

[45]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[46]  W. Kuo,et al.  Microstructural changes of phenolic resin during pyrolysis , 2001 .

[47]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[48]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[49]  Y. Yamashita,et al.  A study on carbonization of phenol-formaldehyde resin labelled with deuterium and 13C , 1981 .