Measurement of rate of expansion in the perception of radial motion

Optic flow generated by rigid surface patches can be decomposed into a small number of elementary motion types. In these experiments, we show that the human visual system can evaluate expansion, one of these motion types, metrically. Moreover, we show that the discrimination of rates of expansion are spatially local. Because the estimation of the focus of expansion is somewhat imprecise, this locality sometimes produces predictable errors in the estimation of rate of expansion. One can make predictions like this with a model adapted from one previously developed for angular-velocity discrimination.

[1]  Constance S. Royden,et al.  Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Paul R. Schrater,et al.  Mechanisms of visual motion detection , 2000, Nature Neuroscience.

[3]  M T Turvey,et al.  Optical information about the severity of upcoming contacts. , 1993, Journal of experimental psychology. Human perception and performance.

[4]  Jose F. Barraza,et al.  Parametric measurements of optic flow by humans , 2004 .

[5]  A. Verri,et al.  First-order analysis of optical flow in monkey brain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Daniel J. Hannon,et al.  Direction of self-motion is perceived from optical flow , 1988, Nature.

[7]  John C. Rothwell,et al.  Long-term reorganization of human motor cortex driven by short-term sensory stimulation , 1998, Nature Neuroscience.

[8]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[9]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[10]  J A Perrone,et al.  Emulating the Visual Receptive-Field Properties of MST Neurons with a Template Model of Heading Estimation , 1998, The Journal of Neuroscience.

[11]  Alan Johnston,et al.  Concurrent measurement of perceived speed and speed discrimination using the method of constant stimuli , 1999 .

[12]  Nicholas G. Hatsopoulos,et al.  Visual navigation with a neural network , 1991, Neural Networks.

[13]  Mary J. Bravo,et al.  Evidence for two speed signals: a coarse local signal for segregation and a precise global signal for discrimination , 1995, Vision Research.

[14]  Markus Lappe,et al.  Heading detection from optic flow , 1994, Nature.

[15]  D. Foster,et al.  Thresholds From Psychometric Functions : Superiority of Bootstrap to Incremental and Probit Variance Estimators , 1991 .

[16]  Norberto M. Grzywacz,et al.  Parametric decomposition of optic flow by humans , 2005, Vision Research.

[17]  Norberto M Grzywacz,et al.  Measurement of angular velocity in the perception of rotation , 2002, Vision Research.

[18]  G. Orban,et al.  Human velocity and direction discrimination measured with random dot patterns , 1988, Vision Research.

[19]  Vision Research , 1961, Nature.

[20]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[21]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[22]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[23]  Kevin N. Gurney,et al.  A biologically plausible model of early visual motion processing I: Theory and implementation , 1996, Biological Cybernetics.

[24]  Norberto M Grzywacz,et al.  Local computation of angular velocity in rotational visual motion. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Fred Sir Hoyle,et al.  The Black Cloud , 1957 .

[26]  John A. Perrone,et al.  A visual motion sensor based on the properties of V1 and MT neurons , 2004, Vision Research.

[27]  Denis G. Pelli,et al.  Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion, and Binocular Disparity , 2001 .

[28]  Makoto Hirahara,et al.  A neural network model for visual motion detection that can explain psychophysical and neurophysiological phenomena , 2004, Biological Cybernetics.

[29]  S. McKee A local mechanism for differential velocity detection , 1981, Vision Research.

[30]  Ellen C. Hildreth,et al.  The perceptual buildup of three-dimensional structure from motion , 1989, Perception & psychophysics.

[31]  S. McKee,et al.  Precise velocity discrimination despite random variations in temporal frequency and contrast , 1986, Vision Research.

[32]  Constance S. Royden,et al.  Computing heading in the presence of moving objects: a model that uses motion-opponent operators , 2002, Vision Research.

[33]  J A Perrone,et al.  Model for the computation of self-motion in biological systems. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[34]  A Johnston,et al.  Concurrent measurement of perceived speed and speed discrimination threshold using the method of single stimuli , 1999, Vision Research.

[35]  J J Koenderink,et al.  Visual Size Invariance Does Not Apply to Geometric Angle and Speed of Rotation , 1993, Perception.

[36]  T. Freeman,et al.  Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure , 1992, Vision Research.

[37]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[38]  D. Regan,et al.  Visual processing of looming and time to contact throughout the visual field , 1995, Vision Research.

[39]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  S. McKee,et al.  Temporal coherence theory for the detection and measurement of visual motion , 1995, Vision Research.

[41]  D J Hannon,et al.  Eye movements and optical flow. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[42]  Constance S. Royden,et al.  Human heading judgments in the presence of moving objects , 1996, Perception & psychophysics.

[43]  D. Regan,et al.  Dissociation of discrimination thresholds for time to contact and for rate of angular expansion , 1993, Vision Research.

[44]  Markus Lappe,et al.  Temporal recruitment along the trajectory of moving objects and the perception of position , 1999, Vision Research.

[45]  A. V. van den Berg,et al.  Pursuit affects precision of perceived heading for small viewing apertures , 2001, Vision Research.

[46]  Kevin N. Gurney,et al.  A self-organising neural network model of image velocity encoding , 2004, Biological Cybernetics.

[47]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[48]  O. Braddick,et al.  The temporal integration and resolution of velocity signals , 1991, Vision Research.

[49]  D Regan,et al.  Visual responses to vorticity and the neural analysis of optic flow. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[50]  S. McKee,et al.  Detecting a trajectory embedded in random-direction motion noise , 1995, Vision Research.

[51]  Paul A. Braren,et al.  Wayfinding on foot from information in retinal, not optical, flow. , 1992, Journal of experimental psychology. General.

[52]  W. Warren,et al.  Perception of translational heading from optical flow. , 1988, Journal of experimental psychology. Human perception and performance.

[53]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[54]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[55]  Scott N. J. Watamaniuk,et al.  Direction Perception in Complex Dynamic Displays: the Integration of Dir~~tion Information , 1988 .

[56]  Frederick Mosteller,et al.  Understanding robust and exploratory data analysis , 1983 .

[57]  J. Perrone,et al.  A model of self-motion estimation within primate extrastriate visual cortex , 1994, Vision Research.

[58]  A. Pantle,et al.  On the mechanism that encodes the movement of contrast variations: Velocity discrimination , 1989, Vision Research.

[59]  N. Grzywacz,et al.  Temporal coherence in visual rotation , 2002, Vision Research.

[60]  A. Yuille,et al.  A Theoretical Framework for Visual Motion , 1996 .

[61]  L Welch,et al.  Coherence Determines Speed Discrimination , 1990, Perception.

[62]  A. V. van den Berg,et al.  Heading detection using motion templates and eye velocity gain fields , 1998, Vision Research.

[63]  Ellen C. Hildreth,et al.  Recovering heading for visually-guided navigation , 1992, Vision Research.

[64]  Alexander Thiele,et al.  Speed skills: measuring the visual speed analyzing properties of primate MT neurons , 2001, Nature Neuroscience.

[65]  Simon K. Rushton,et al.  Optic Flow and Beyond , 2004 .

[66]  R. Hetherington The Perception of the Visual World , 1952 .

[67]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[68]  D Regan,et al.  Accuracy of estimating time to collision using binocular and monocular information , 1998, Vision Research.

[69]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[70]  S P McKee,et al.  Motion interference in speed discrimination. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[71]  Takeo Watanabe,et al.  High-Level Motion Processing , 1998 .