Identification of hot regions of the Abeta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association.

[1]  M. Geyer,et al.  NMR Spectroscopic Investigation of Early Events in IAPP Amyloid Fibril Formation , 2009, Chembiochem : a European journal of chemical biology.

[2]  David Eisenberg,et al.  Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process , 2009, Protein science : a publication of the Protein Society.

[3]  D. Raleigh,et al.  Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution , 2009, Proceedings of the National Academy of Sciences.

[4]  John W. Gilbert,et al.  Cellular Prion Protein Mediates Impairment of Synaptic Plasticity by Amyloid-β Oligomers , 2009, Nature.

[5]  Richard D. Leapman,et al.  Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils , 2008, Proceedings of the National Academy of Sciences.

[6]  Aleksandra Velkova,et al.  Amyloid‐Kreuzwechselwirkung zur Inhibierung der Proteinaggregation, nicht aber der Proteinfunktion: Inhibierung der Insulinaggregation im nanomolaren Bereich durch ein IAPP‐Mimetikum , 2008 .

[7]  A. Kapurniotu,et al.  Exploiting cross-amyloid interactions to inhibit protein aggregation but not function: nanomolar affinity inhibition of insulin aggregation by an IAPP mimic. , 2008, Angewandte Chemie.

[8]  Pritam Das,et al.  Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Aβ toxicity , 2008, Proceedings of the National Academy of Sciences.

[9]  Christian Hölscher,et al.  Common pathological processes in Alzheimer disease and type 2 diabetes: A review , 2007, Brain Research Reviews.

[10]  Richard Leapman,et al.  Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. , 2007, Biochemistry.

[11]  M. Findeis The role of amyloid β peptide 42 in Alzheimer's disease , 2007 .

[12]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[13]  A. Kapurniotu,et al.  IAPP mimic blocks Abeta cytotoxic self-assembly: cross-suppression of amyloid toxicity of Abeta and IAPP suggests a molecular link between Alzheimer's disease and type II diabetes. , 2007, Angewandte Chemie.

[14]  Li‐Mei Yan,et al.  Ein IAPP‐Mimetikum blockiert die zytotoxische Aggregation von Aβ – die Kreuzunterdrückung der Amyloidtoxizität von Aβ und IAPP deutet auf einen molekularen Zusammenhang zwischen Alzheimer‐Krankheit und Typ‐II‐Diabetes hin , 2007 .

[15]  R. Wetzel,et al.  Plasticity of amyloid fibrils. , 2007, Biochemistry.

[16]  E. Gazit,et al.  Molecular mapping of the recognition interface between the islet amyloid polypeptide and insulin. , 2006, Angewandte Chemie.

[17]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[18]  Tetsuaki Arai,et al.  Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer's disease. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Kapurniotu,et al.  Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Westermark Aspects on human amyloid forms and their fibril polypeptides , 2005, The FEBS journal.

[21]  R. Riek,et al.  3D structure of Alzheimer's amyloid-β(1–42) fibrils , 2005 .

[22]  A. Esteras-Chopo,et al.  The amyloid stretch hypothesis: recruiting proteins toward the dark side. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  V. Uversky,et al.  Conformational constraints for amyloid fibrillation: the importance of being unfolded. , 2004, Biochimica et biophysica acta.

[24]  Ronald Wetzel,et al.  Seeding Specificity in Amyloid Growth Induced by Heterologous Fibrils* , 2004, Journal of Biological Chemistry.

[25]  M. Nicolls,et al.  The clinical and biological relationship between Type II diabetes mellitus and Alzheimer's disease. , 2004, Current Alzheimer research.

[26]  L. Serrano,et al.  Sequence determinants of amyloid fibril formation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Trojanowski,et al.  Initiation and Synergistic Fibrillization of Tau and Alpha-Synuclein , 2003, Science.

[28]  Sharon Gilead,et al.  Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. , 2002, Journal of molecular biology.

[29]  J. Bernhagen,et al.  Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. , 2000, Journal of molecular biology.

[30]  D. Raleigh,et al.  Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. , 1999, Journal of molecular biology.

[31]  U Aebi,et al.  Polymorphic fibrillar assembly of human amylin. , 1997, Journal of structural biology.

[32]  L. Tjernberg,et al.  Arrest of -Amyloid Fibril Formation by a Pentapeptide Ligand (*) , 1996, The Journal of Biological Chemistry.

[33]  D. Steiner,et al.  Effects of beta cell granule components on human islet amyloid polypeptide fibril formation , 1996, FEBS letters.

[34]  R. Leapman,et al.  A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Kapurniotu,et al.  Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. , 2001, Biopolymers.

[36]  R. Frank Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support , 1992 .