HDT-MR: A Scalable Solution for RDF Compression with HDT and MapReduce
暂无分享,去创建一个
[1] Óscar Corcho,et al. HDTourist: Exploring Urban Data on Android , 2014, International Semantic Web Conference.
[2] Olivier Curé,et al. WaterFowl: A Compact, Self-indexed and Inference-Enabled Immutable RDF Store , 2014, ESWC.
[3] Rik Van de Walle,et al. Querying Datasets on the Web with High Availability , 2014, SEMWEB.
[4] Ole Karlsson,et al. [Do you want to know more?]. , 2014, Theriaca.
[5] Conor Hayes,et al. SemStim at the LOD-RecSys 2014 Challenge , 2014, SemWebEval@ESWC.
[6] Miguel A. Martínez-Prieto,et al. Exchange and Consumption of Huge RDF Data , 2012, ESWC.
[7] Sanjay Ghemawat,et al. MapReduce: simplified data processing on large clusters , 2008, CACM.
[8] Yon Dohn Chung,et al. Parallel data processing with MapReduce: a survey , 2012, SGMD.
[9] Miguel A. Martínez-Prieto,et al. Querying RDF dictionaries in compressed space , 2012, SIAP.
[10] Pascal Hitzler,et al. Logical Linked Data Compression , 2013, ESWC.
[11] Axel Polleres,et al. Binary RDF representation for publication and exchange (HDT) , 2013, J. Web Semant..
[12] Nieves R. Brisaboa,et al. Compressed String Dictionaries , 2011, SEA.
[13] Jacopo Urbani,et al. Scalable RDF data compression with MapReduce , 2013, Concurr. Comput. Pract. Exp..
[14] Spyros Kotoulas,et al. Efficient Parallel Dictionary Encoding for RDF Data. , 2014 .
[15] Nieves R. Brisaboa,et al. Compressed vertical partitioning for efficient RDF management , 2014, Knowledge and Information Systems.
[16] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[17] Nandan Mirajkar,et al. Perform wordcount Map-Reduce Job in Single Node Apache Hadoop cluster and compress data using Lempel-Ziv-Oberhumer (LZO) algorithm , 2013, ArXiv.
[18] Jeff Heflin,et al. LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..