Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning in Grassmann manifolds, i.e., the space of linear subspaces. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose an algorithm for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into higher dimensional Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.

[1]  Vladimir Pavlovic,et al.  Face tracking and recognition with visual constraints in real-world videos , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Tieniu Tan,et al.  A Study on Gait-Based Gender Classification , 2009, IEEE Transactions on Image Processing.

[3]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[4]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Yong Xu,et al.  Dynamic texture classification using dynamic fractal analysis , 2011, 2011 International Conference on Computer Vision.

[7]  Anuj Srivastava,et al.  Bayesian and geometric subspace tracking , 2004, Advances in Applied Probability.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  René Vidal,et al.  Clustering and dimensionality reduction on Riemannian manifolds , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[11]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[12]  Y. Chikuse Statistics on special manifolds , 2003 .

[13]  Janusz Konrad,et al.  Action Recognition From Video Using Feature Covariance Matrices , 2013, IEEE Transactions on Image Processing.

[14]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[15]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[16]  Brian C. Lovell,et al.  Fisher tensors for classifying human epithelial cells , 2014, Pattern Recognit..

[17]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[20]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  R. Vidal,et al.  Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Narendra Ahuja,et al.  Maximum Margin Distance Learning for Dynamic Texture Recognition , 2010, ECCV.

[24]  Daniel D. Lee,et al.  Grassmann discriminant analysis: a unifying view on subspace-based learning , 2008, ICML '08.

[25]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[26]  Brian C. Lovell,et al.  Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach , 2012, ECCV.

[27]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  René Vidal,et al.  Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[30]  Rama Chellappa,et al.  Compressive Acquisition of Dynamic Scenes , 2010, ECCV.

[31]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[32]  Binlong Li,et al.  Activity recognition using dynamic subspace angles , 2011, CVPR 2011.

[33]  Brian C. Lovell,et al.  Kernel analysis on Grassmann manifolds for action recognition , 2013, Pattern Recognit. Lett..

[34]  Jonathan H. Manton,et al.  A globally convergent numerical algorithm for computing the centre of mass on compact Lie groups , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[35]  Ravi Ramamoorthi,et al.  Analytic PCA Construction for Theoretical Analysis of Lighting Variability in Images of a Lambertian Object , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Rama Chellappa,et al.  Unsupervised Adaptation Across Domain Shifts by Generating Intermediate Data Representations , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Michael Werman,et al.  Affine Invariance Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[38]  Bart De Moor,et al.  Subspace angles between ARMA models , 2002, Syst. Control. Lett..

[39]  Yousef Saad,et al.  Trace optimization and eigenproblems in dimension reduction methods , 2011, Numer. Linear Algebra Appl..

[40]  Hongdong Li,et al.  Rotation Averaging , 2013, International Journal of Computer Vision.

[41]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[42]  Rama Chellappa,et al.  Kernel Learning for Extrinsic Classification of Manifold Features , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  René Vidal,et al.  A Unified Approach to Segmentation and Categorization of Dynamic Textures , 2010, ACCV.

[44]  Hakan Cevikalp,et al.  Face recognition based on image sets , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Yui Man Lui,et al.  Human gesture recognition on product manifolds , 2012, J. Mach. Learn. Res..

[46]  Gene H. Golub,et al.  Matrix computations , 1983 .

[47]  Tieniu Tan,et al.  Robust view transformation model for gait recognition , 2011, 2011 18th IEEE International Conference on Image Processing.

[48]  Baba C. Vemuri,et al.  On A Nonlinear Generalization of Sparse Coding and Dictionary Learning , 2013, ICML.

[49]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Brian C. Lovell,et al.  Improved Image Set Classification via Joint Sparse Approximated Nearest Subspaces , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[52]  Brian C. Lovell,et al.  Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[53]  Peter Meer,et al.  Nonlinear Mean Shift over Riemannian Manifolds , 2009, International Journal of Computer Vision.

[54]  Yongkang Wong,et al.  Combined Learning of Salient Local Descriptors and Distance Metrics for Image Set Face Verification , 2012, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance.

[55]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Tae-Kyun Kim,et al.  Canonical Correlation Analysis of Video Volume Tensors for Action Categorization and Detection , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[59]  Josef Kittler,et al.  Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Yang Wang,et al.  Human Action Recognition by Semilatent Topic Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Tong Zhang,et al.  Improved Local Coordinate Coding using Local Tangents , 2010, ICML.

[62]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[63]  Stephen J. Maybank,et al.  Human Action Recognition under Log-Euclidean Riemannian Metric , 2009, ACCV.

[64]  Conrad Sanderson,et al.  Bags of Affine Subspaces for Robust Object Tracking , 2014, 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[65]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[66]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[68]  Paul M. Thompson,et al.  Segmentation of High Angular Resolution Diffusion MRI Using Sparse Riemannian Manifold Clustering , 2014, IEEE Transactions on Medical Imaging.

[69]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[70]  MeerPeter,et al.  Nonlinear Mean Shift over Riemannian Manifolds , 2009 .

[71]  René Vidal,et al.  Sparse Riemannian manifold clustering for HARDI segmentation , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[72]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[73]  K.A. Gallivan,et al.  Efficient algorithms for inferences on Grassmann manifolds , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[74]  Brian C. Lovell,et al.  Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching , 2011, CVPR 2011.

[75]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[76]  Hongdong Li,et al.  Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[78]  Brian C. Lovell,et al.  Dictionary Learning and Sparse Coding on Grassmann Manifolds: An Extrinsic Solution , 2013, 2013 IEEE International Conference on Computer Vision.

[79]  U. Helmke,et al.  Newton's method on Gra{\ss}mann manifolds , 2007, 0709.2205.

[80]  Rama Chellappa,et al.  Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Nuno Vasconcelos,et al.  Probabilistic kernels for the classification of auto-regressive visual processes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[82]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[83]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[85]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[86]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[87]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.