Logics of similarity and their dual tableaux. A survey

We present several classes of logics for reasoning with information stored in information systems. The logics enable us to cope with the phenomena of incompleteness of information and uncertainty of knowledge derived from such an information. Relational inference systems for these logics are developed in the style of dual tableaux.

[1]  Stéphane Demri,et al.  Incomplete Information: Structure, Inference, Complexity , 2002, Monographs in Theoretical Computer Science An EATCS Series.

[2]  Joanna Golinska-Pilarek,et al.  Tableaux and Dual Tableaux: Transformation of Proofs , 2007, Stud Logica.

[3]  Dov M. Gabbay,et al.  On Modal Logics Characterized by Models with Relative Accessibility Relations: Part I , 2000, Stud Logica.

[4]  J. Kacprzyk,et al.  Incomplete Information: Rough Set Analysis , 1997 .

[5]  Andrea Formisano,et al.  An Environment for Specifying Properties of Dyadic Relations and Reasoning About Them II: Relational Presentation of Non-classical Logics , 2006, Theory and Applications of Relational Structures as Knowledge Instruments.

[6]  Ewa Orlowska,et al.  Correspondence Results for Relational Proof Systems with Application to the Lambek Calculus , 2002, Stud Logica.

[7]  Stéphane Demri,et al.  Automata-Theoretic Decision Procedures for Information Logics , 2002, Fundam. Informaticae.

[8]  Ewa Orlowska,et al.  Semantics of Vague Concepts , 1985 .

[9]  Wendy MacCaull Relational Proof System for Linear and Other Substructural Logics , 1997, Log. J. IGPL.

[10]  Wendy MacCaull,et al.  Relational semantics and a relational proof system for full Lambek calculus , 1998, The Journal of Symbolic Logic.

[11]  David A. Bell,et al.  Data Reduction Based on Hyper Relations , 1998, KDD.

[12]  Ewa Orlowska,et al.  Dynamic logic with program specifications and its relational proof system , 1993, J. Appl. Non Class. Logics.

[13]  Ewa Orlowska,et al.  A Logic of Type Relations and its Applications to Relational Databases , 2006, J. Log. Comput..

[14]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[15]  Marianna Nicolosi Asmundo,et al.  An efficient relational deductive system for propositional non-classical logics , 2006, J. Appl. Non Class. Logics.

[16]  Jorge Lobo,et al.  Modal logics for knowledge representation systems , 1991 .

[17]  Dimiter Vakarelov,et al.  A model logic for similarity relations in pawlak knowledge representation systems , 1991, Fundam. Informaticae.

[18]  Ewa Orlowska,et al.  Kripke models with relative accessibility and their applications to inferences from incomplete information , 1988 .

[19]  Stéphane Demri,et al.  Relative Nondeterministic Information Logic is EXPTIME-complete , 2007, Fundam. Informaticae.

[20]  Witold Lipski,et al.  On semantic issues connected with incomplete information databases , 1979, ACM Trans. Database Syst..

[21]  Andrea Formisano,et al.  A Prolog tool for relational translation of modal logics: a front-end for relational proof systems , 2005 .

[22]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[23]  Manuel Ojeda-Aciego,et al.  Relational Approach to Order-of-Magnitude Reasoning , 2006, Theory and Applications of Relational Structures as Knowledge Instruments.

[24]  Dimiter Vakarelov,et al.  Modal Logics for Knowledge Representation Systems , 1989, Theor. Comput. Sci..

[25]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[26]  Dimiter Vakarelov Abstract Characterization of some Knowledge Representation Systems and the Logic NIL of Nondeterministic Information , 1986, AIMSA.

[27]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[28]  Ewa Orlowska,et al.  Relational Semantics for Nonclassical Logics: Formulas are Relations , 1994 .

[29]  Stéphane Demri,et al.  The Nondeterministic Information Logic NIL is PSPACE-complete , 2000, Fundam. Informaticae.

[30]  Ewa Orlowska,et al.  Relational proof systems for spatial reasoning ★ , 2006, J. Appl. Non Class. Logics.

[31]  Philippe Balbiani Emptiness Relations in Property Systems , 2001, RelMiCS.

[32]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[33]  Marcelo F. Frias,et al.  A proof system for fork algebras and its applications to reasoning in logics based on intuitionism , 1995 .

[34]  Witold Lipski,et al.  Informational Systems with Incomplete Information , 1976, ICALP.

[35]  Ivo Düntsch,et al.  Classificatory filtering in decision systems , 2000, Int. J. Approx. Reason..

[36]  Ewa Orlowska,et al.  A logic of indiscernibility relations , 1984, Symposium on Computation Theory.

[37]  Davide Bresolin,et al.  Relational dual tableaux for interval temporal logics ★ , 2006, J. Appl. Non Class. Logics.

[38]  Ewa Orlowska,et al.  Representation of Nondeterministic Information , 1984, Theor. Comput. Sci..

[39]  Ewa Orlowska,et al.  A Relational Formalisation of Arbitrary Finite Valued Logics , 1998, Log. J. IGPL.

[40]  Ewa Orlowska,et al.  Relational proof system for relevant logics , 1992, Journal of Symbolic Logic.

[41]  Stéphane Demri,et al.  Logical Analysis of Demonic Nondeterministic Programs , 1996, Theor. Comput. Sci..

[42]  Ewa Orlowska,et al.  Logic of nondeterministic information , 1985, Stud Logica.