NanoLab: A nanorobotic system for automated pick-and-place handling and characterization of CNTs

Carbon nanotubes (CNTs) are one of the most promising materials for nanoelectronic applications. Before bringing CNTs into large-scale production, a reliable nanorobotic system for automated handling and characterization as well as prototyping of CNT-based components is essential. This paper presents the NanoLab setup, a nanorobotic system that combines specially developed key components such as electrothermal microgrippers and mobile microrobots inside a scanning electron microscope. The working principle and fabrication of mobile microrobots and electrothermal microgripper as well as their interaction and integration is described. Furthermore, the NanoLab is used to explore novel key strategies such as automated locating of CNTs for pick-and-place handling and methods for electrical characterization of CNTs. The results have been achieved within the framework of a European research project where the scientific knowledge will be transfered into an industrial system that will be commercially available for potential customers.

[1]  Jagath Samarabandu,et al.  Energy Based Line Detection , 2006, 2006 Canadian Conference on Electrical and Computer Engineering.

[2]  K. Mølhave,et al.  Pick-and-place nanomanipulation using microfabricated grippers , 2006, Nanotechnology.

[3]  Prachi Patel-Predd,et al.  Update: Carbon-Nanotube Wiring Gets Real , 2008 .

[4]  Ole Sigmund,et al.  Focused Ion Beam (FIB) Modification of Topology Optimized Polysilicon Microgrippers , 2008 .

[5]  F. Kaegi,et al.  A nanomanipulation platform for semi automated manipulation of nano-sized objects using mobile microrobots inside a Scanning Electron Microscope , 2008 .

[6]  Oliver Frick,et al.  Automated Nano-Assembly in the SEM I: Challenges in setting up a warehouse , 2008 .

[7]  Gehan A. J. Amaratunga,et al.  Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition , 2003 .

[8]  Anja Boisen,et al.  Scanning microscopic four-point conductivity probes , 2002 .

[9]  W. Hoenlein,et al.  Carbon nanotube applications in microelectronics , 2004, IEEE Transactions on Components and Packaging Technologies.

[10]  Giancarlo Corradini,et al.  A modular actuator system for miniature positioning systems , 2008 .

[11]  Jean-Marc Breguet Actionneurs "stick and slip" pour micro-manipulateurs , 1998 .

[12]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[13]  S. Wind,et al.  Carbon nanotube electronics , 2002, Digest. International Electron Devices Meeting,.

[14]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[15]  Chang-Sung Jeong,et al.  A straight line detection using principal component analysis , 2006, Pattern Recognit. Lett..

[16]  Sergej Fatikow Automated nanohandling by microrobots , 2008 .

[17]  Sergej Fatikow,et al.  Depth-detection methods for microgripper based CNT manipulation in a scanning electron microscope , 2008 .

[18]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[19]  O. Sigmund,et al.  Rapid prototyping of nanotube-based devices using topology-optimized microgrippers , 2008, Nanotechnology.

[20]  Sergej Fatikow,et al.  A carbon nanofibre scanning probe assembled using an electrothermal microgripper , 2007 .

[21]  T. Christenson,et al.  Thermo-magnetic metal flexure actuators , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[22]  Ole Sigmund,et al.  Topology optimized electrothermal polysilicon microgrippers , 2008 .

[23]  A. Bergander,et al.  Monolithic piezoelectric actuators for miniature robotic systems , 2004 .

[24]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.