Segmentation of 3D microtomographic images of granular materials with the stochastic watershed

Segmentation of 3D images of granular materials obtained by microtomography is not an easy task. Because of the conditions of acquisition and the nature of the media, the available images are not exploitable without a reliable method of extraction of the grains. The high connectivity in the medium, the disparity of the object's shape and the presence of image imperfections make classical segmentation methods (using image gradient and watershed constrained by markers) extremely difficult to perform efficiently. In this paper, we propose a non‐parametric method using the stochastic watershed, allowing to estimate a 3D probability map of contours. Procedures allowing to extract final segmentation from this function are then presented.

[1]  D. Jeulin,et al.  3D Multi-Scale Segmentation Of Granular Materials , 2011 .

[2]  Virginia L. Ballarin,et al.  Comparing marker definition algorithms for watershed segmentation in microscopy images , 2008 .

[3]  Jan Sijbers,et al.  Reduction of ring artefacts in high resolution micro-CT reconstructions. , 2004, Physics in medicine and biology.

[4]  Fernand Meyer,et al.  From connected operators to levelings , 1998 .

[5]  Soille Pierre,et al.  Mathematical Morphology and Its Applications to Image and Signal Processing , 2011, Lecture Notes in Computer Science.

[6]  Ghassan Hamarneh,et al.  Watershed segmentation using prior shape and appearance knowledge , 2009, Image Vis. Comput..

[7]  Russell Greiner,et al.  Heterogeneous Stacking for Classification-Driven Watershed Segmentation , 2008, EURASIP J. Adv. Signal Process..

[8]  érald,et al.  3 D MULTI-SCALE SEGMENTATION OF GRANULAR MATERIALS , 2008 .

[9]  Juan José Murillo-Fuentes,et al.  Digital Communication Receivers Using Gaussian Processes for Machine Learning , 2008, EURASIP J. Adv. Signal Process..

[10]  Dominique Jeulin,et al.  Stochastic watershed segmentation , 2007, ISMM.

[11]  A. Dragon,et al.  Damage modelling framework for viscoelastic particulate composites via a scale transition approach , 2006 .

[12]  Andrew G. Dempster,et al.  Blood Cell Segmentation Using Minimum Area Watershed and Circle Radon Transformations , 2005, ISMM.

[13]  Nicolas Passat,et al.  Using Watershed and Multimodal Data for Vessel Segmentation: Application to the Superior Sagittal Sinus , 2005, ISMM.

[14]  Fernand Meyer,et al.  Grey-Weighted, Ultrametric and Lexicographic Distances , 2005, ISMM.

[15]  Dominique Jeulin,et al.  Modeles morphologiques de structures aleatoires et de changement d'echelle , 1991 .

[16]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[17]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[18]  S. Beucher Use of watersheds in contour detection , 1979 .

[19]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .