Predicting Carbon Spectrum in Heteronuclear Single Quantum Coherence Spectroscopy for Online Feedback During Surgery

<inline-formula><tex-math notation="LaTeX">${}^{1}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>1</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq1-2920646.gif"/></alternatives></inline-formula>H High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) is a reliable technology used for detecting metabolites in solid tissues. Fast response time enables guiding surgeons in real time, for detecting tumor cells that are left over in the excision cavity. However, severe overlap of spectral resonances in 1D signal often render distinguishing metabolites impossible. In that case, Heteronuclear Single Quantum Coherence Spectroscopy (HSQC) NMR is applied which can distinguish metabolites by generating 2D spectra (<inline-formula><tex-math notation="LaTeX">${}^{1}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>1</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq2-2920646.gif"/></alternatives></inline-formula>H-<inline-formula><tex-math notation="LaTeX">${}^{13}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>13</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq3-2920646.gif"/></alternatives></inline-formula>C). Unfortunately, this analysis requires much longer time and prohibits real time analysis. Thus, obtaining 2D spectrum fast has major implications in medicine. In this study, we show that using multiple multivariate regression and statistical total correlation spectroscopy, we can learn the relation between the <inline-formula><tex-math notation="LaTeX">${}^{1}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>1</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq4-2920646.gif"/></alternatives></inline-formula>H and <inline-formula><tex-math notation="LaTeX">${}^{13}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>13</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq5-2920646.gif"/></alternatives></inline-formula>C dimensions. Learning is possible with small sample sizes and without the need for performing the HSQC analysis, we can predict the <inline-formula><tex-math notation="LaTeX">${}^{13}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>13</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq6-2920646.gif"/></alternatives></inline-formula>C dimension by just performing <inline-formula><tex-math notation="LaTeX">${}^{1}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>1</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq7-2920646.gif"/></alternatives></inline-formula>H HRMAS NMR experiment. We show on a rat model of central nervous system tissues (80 samples, 5 tissues) that our methods achieve 0.971 and 0.957 mean <inline-formula><tex-math notation="LaTeX">$R^2$</tex-math><alternatives><mml:math><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq8-2920646.gif"/></alternatives></inline-formula> values, respectively. Our tests on 15 human brain tumor samples show that we can predict 104 groups of 39 metabolites with 97 percent accuracy. Finally, we show that we can predict the presence of a drug resistant tumor biomarker (creatine) despite obstructed signal in <inline-formula><tex-math notation="LaTeX">${}^{1}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>1</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="cicek-ieq9-2920646.gif"/></alternatives></inline-formula>H dimension. In practice, this information can provide valuable feedback to the surgeon to further resect the cavity to avoid potential recurrence.

[1]  M. Billeter Non-uniform sampling in biomolecular NMR , 2017, Journal of Biomolecular NMR.

[2]  Lucio Frydman,et al.  Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications. , 2011, Journal of magnetic resonance.

[3]  I. Namer,et al.  High-resolution magic angle spinning (1)H nuclear magnetic resonance spectroscopy metabolomics of hyperfunctioning parathyroid glands. , 2016, Surgery.

[4]  John C Lindon,et al.  Statistical spectroscopic tools for biomarker discovery and systems medicine. , 2013, Analytical chemistry.

[5]  Lanlan Liu,et al.  Tumor-targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia-dampened chemotherapy and photodynamic therapy at a single dose , 2018, Theranostics.

[6]  Mark W Maciejewski,et al.  Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR. , 2014, Accounts of chemical research.

[7]  M. Wyss,et al.  Creatine and creatinine metabolism. , 2000, Physiological reviews.

[8]  A. Bax,et al.  Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data , 2016, Journal of Biomolecular NMR.

[9]  P. Bachellier,et al.  Metabolomics approaches in pancreatic adenocarcinoma: tumor metabolism profiling predicts clinical outcome of patients , 2017, BMC Medicine.

[10]  Brian E Coggins,et al.  High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN , 2008, Journal of biomolecular NMR.

[11]  E Holmes,et al.  Probing latent biomarker signatures and in vivo pathway activity in experimental disease states via statistical total correlation spectroscopy (STOCSY) of biofluids: application to HgCl2 toxicity. , 2006, Journal of proteome research.

[12]  D. Gauguier,et al.  Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. , 2005, Analytical chemistry.

[13]  Di Guo,et al.  High-fidelity spectroscopy reconstruction in accelerated NMR. , 2018, Chemical communications.

[14]  David L. Woodruff,et al.  Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy , 2006, Metabolomics.

[15]  Mark R Viant,et al.  Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. , 2008, Analytica chimica acta.

[16]  C. Jaroniec,et al.  Nmrglue: an open source Python package for the analysis of multidimensional NMR data , 2013, Journal of biomolecular NMR.

[17]  Jian-Feng Cai,et al.  Accelerated NMR spectroscopy with low-rank reconstruction. , 2015, Angewandte Chemie.

[18]  J L Ackerman,et al.  Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic‐angle spinning , 1996, Magnetic resonance in medicine.

[19]  P. Kehrli,et al.  Toward improved grading of malignancy in oligodendrogliomas using metabolomics , 2008, Magnetic resonance in medicine.