The global analysis on the spectral collocation method for time fractional Schrödinger equation

Abstract In this paper, a spectral collocation method is proposed and analyzed for solving the time fractional Schrodinger equation. The space derivative is discretized using the collocation method and the time fractional derivative using Grunwald–Letnikov formulation. The stability and convergence of the full discretization scheme are analyzed based on the z-transform. The global behavior of the finite difference spectral collocation method is derived. Numerical examples show a good agreement with the theoretical analysis.

[1]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[2]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[4]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[5]  Bangti Jin,et al.  Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..

[6]  Fawang Liu,et al.  Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation , 2016 .

[7]  Fawang Liu,et al.  Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains , 2019, Comput. Math. Appl..

[8]  A. Ionescu,et al.  Nonlinear fractional Schrödinger equations in one dimension , 2012, 1209.4943.

[9]  Jie Xin,et al.  The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition , 2011, Comput. Math. Appl..

[10]  Fawang Liu,et al.  A novel finite volume method for the Riesz space distributed-order diffusion equation , 2017, Comput. Math. Appl..

[11]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[12]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[14]  Hui Zhang,et al.  A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem , 2018, Appl. Math. Comput..

[15]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[16]  Abdon Atangana,et al.  Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative , 2016 .

[17]  Dumitru Baleanu,et al.  Lagrangian Formulation of Classical Fields within Riemann-Liouville Fractional Derivatives , 2005 .

[18]  K. Burrage,et al.  A new fractional finite volume method for solving the fractional diffusion equation , 2014 .

[19]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[20]  Fawang Liu,et al.  Numerical solution of the time fractional Black-Scholes model governing European options , 2016, Comput. Math. Appl..

[21]  Fawang Liu,et al.  Numerical methods of fractional partial differential equations and applications , 2015 .

[22]  Marc Weilbeer,et al.  Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background , 2005 .

[23]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[24]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[25]  Allaberen Ashyralyev,et al.  A stable numerical method for multidimensional time fractional Schrödinger equations , 2016, Comput. Math. Appl..

[26]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[27]  Roberto Garrappa,et al.  Explicit methods for fractional differential equations and their stability properties , 2009 .

[28]  Chengming Huang,et al.  A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation , 2014, Numerical Algorithms.

[29]  I. Turner,et al.  Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains , 2018, Applied Mathematical Modelling.

[30]  Jianping Dong,et al.  Space-time fractional Schrödinger equation with time-independent potentials , 2008 .

[31]  Bo Yu,et al.  A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation , 2014, Numerical Algorithms.

[32]  Ali H. Bhrawy,et al.  A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations , 2015, J. Comput. Phys..

[33]  Mingyu Xu,et al.  Generalized fractional Schrödinger equation with space-time fractional derivatives , 2007 .

[34]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[35]  Alain J. Martin,et al.  Particle Physics and the Schrödinger Equation , 1998 .

[36]  E. I. Jury,et al.  Theory and application of the z-transform method , 1965 .

[37]  Fawang Liu,et al.  A novel finite volume method for the Riesz space distributed-order advection–diffusion equation , 2017 .

[38]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[39]  Da Xu,et al.  The Global Behavior of Finite Difference-Spatial Spectral Collocation Methods for a Partial Integro-differential Equation with a Weakly Singular Kernel , 2013 .

[40]  Mingyu Xu,et al.  Some solutions to the space fractional Schrödinger equation using momentum representation method , 2007 .

[41]  Fawang Liu,et al.  Numerical solution of the time fractional reaction-diffusion equation with a moving boundary , 2017, J. Comput. Phys..

[42]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[44]  Sunil Kumar,et al.  A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system , 2012, Comput. Math. Appl..

[45]  Fawang Liu,et al.  A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain , 2017 .

[46]  C. Lubich Discretized fractional calculus , 1986 .

[47]  Leilei Wei,et al.  Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation , 2012 .

[48]  Fawang Liu,et al.  The numerical simulation of the tempered fractional Black–Scholes equation for European double barrier option , 2016 .

[49]  Dumitru Baleanu,et al.  On the Fractional Hamilton and Lagrange Mechanics , 2012 .