Monotonically convergent optimization in quantum control using Krotov's method.

The non-linear optimization method developed by A. Konnov and V. Krotov [Autom. Remote Cont. (Engl. Transl.) 60, 1427 (1999)] has been used previously to extend the capabilities of optimal control theory from the linear to the non-linear Schrödinger equation [S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002)]. Here we show that based on the Konnov-Krotov method, monotonically convergent algorithms are obtained for a large class of quantum control problems. It includes, in addition to nonlinear equations of motion, control problems that are characterized by non-unitary time evolution, nonlinear dependencies of the Hamiltonian on the control, time-dependent targets, and optimization functionals that depend to higher than second order on the time-evolving states. We furthermore show that the nonlinear (second order) contribution can be estimated either analytically or numerically, yielding readily applicable optimization algorithms. We demonstrate monotonic convergence for an optimization functional that is an eighth-degree polynomial in the states. For the "standard" quantum control problem of a convex final-time functional, linear equations of motion and linear dependency of the Hamiltonian on the field, the second-order contribution is not required for monotonic convergence but can be used to speed up convergence. We demonstrate this by comparing the performance of first- and second-order algorithms for two examples.

[1]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[2]  David J. Tannor,et al.  Controlled dissociation of I2 via optical transitions between the X and B electronic states , 1993 .

[3]  Constantin Brif,et al.  Environment-invariant measure of distance between evolutions of an open quantum system , 2009, 0909.0077.

[4]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[5]  Herschel Rabitz,et al.  Coherent Control of Quantum Dynamics: The Dream Is Alive , 1993, Science.

[6]  R. Kosloff Time-dependent quantum-mechanical methods for molecular dynamics , 1988 .

[7]  A Chebychev propagator for inhomogeneous Schrödinger equations. , 2008, The Journal of chemical physics.

[8]  G. V. Winckel,et al.  Optimal control of number squeezing in trapped Bose-Einstein condensates , 2009, 0908.1634.

[9]  Andreas Kaiser,et al.  Optimal control theory for a target state distributed in time: optimizing the probe-pulse signal of a pump-probe-scheme. , 2004, The Journal of chemical physics.

[10]  Stuart A. Rice,et al.  Optical Control of Molecular Dynamics , 2000 .

[11]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[12]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[13]  V. May,et al.  Theory of ultrafast nonresonant multiphoton transitions in polyatomic molecules: basics and application to optimal control theory. , 2007, The Journal of chemical physics.

[14]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[15]  David J. Tannor,et al.  Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .

[16]  Stuart A. Rice,et al.  Coherent pulse sequence induced control of selectivity of reactions , 1986, International Laser Science Conference.

[17]  Gabriel Turinici,et al.  Generalized monotonically convergent algorithms for solving quantum optimal control problems. , 2004, The Journal of chemical physics.

[18]  Yoon Sup Lee,et al.  Theoretical Study of the Electronic States of the Rb(2) Molecule. , 2001, Journal of molecular spectroscopy.

[19]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[20]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[21]  M. Mundt,et al.  Optimal control of interacting particles: a multi-configuration time-dependent Hartree–Fock approach , 2009 .

[22]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[23]  Optimal control of time-dependent targets , 2004, quant-ph/0409124.

[24]  Tommaso Calarco,et al.  Microwave potentials and optimal control for robust quantum gates on an atom chip , 2006 .

[25]  Yukiyoshi Ohtsuki,et al.  Monotonically convergent algorithms for solving quantum optimal control problems of a dynamical system nonlinearly interacting with a control , 2008 .

[26]  V. May,et al.  Femtosecond laser pulse control of multidimensional vibrational dynamics: Computational studies on the pyrazine molecule. , 2006, The Journal of chemical physics.

[27]  L. González,et al.  Ultrafast photoinduced dissipative hydrogen switching dynamics in thioacetylacetone , 1999 .

[28]  H. Rabitz,et al.  RAPIDLY CONVERGENT ITERATION METHODS FOR QUANTUM OPTIMAL CONTROL OF POPULATION , 1998 .

[29]  Jan Broeckhove,et al.  Time-dependent quantum molecular dynamics , 1992 .

[30]  Herschel Rabitz,et al.  Quantum Pareto optimal control , 2008 .

[31]  Jun Zhang,et al.  Minimum construction of two-qubit quantum operations. , 2004, Physical review letters.

[32]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[33]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .

[34]  A. Borzì,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.

[35]  E K U Gross,et al.  Optimal control of quantum rings by terahertz laser pulses. , 2007, Physical review letters.

[36]  Christiane P. Koch,et al.  Protecting coherence in optimal control theory : State-dependent constraint approach , 2008, 0803.0921.

[37]  K. B. Whaley,et al.  Optimizing entangling quantum gates for physical systems , 2011 .

[38]  Paul Brumer,et al.  Control of unimolecular reactions using coherent light , 1986 .

[39]  Paul Brumer,et al.  Laser control of product quantum state populations in unimolecular reactions , 1986 .

[40]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[41]  Georg Stadler,et al.  Quantum control of electron-phonon scatterings in artificial atoms. , 2004, Physical review letters.

[42]  Christiane P. Koch,et al.  Stabilization of ultracold molecules using optimal control theory (14 pages) , 2004 .

[43]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .