CarGene: Characterisation of sets of genes based on metabolic pathways analysis

The great amount of biological information provides scientists with an incomparable framework for testing the results of new algorithms. Several tools have been developed for analysing gene-enrichment and most of them are Gene Ontology-based tools. We developed a Kyoto Encyclopedia of Genes and Genomes (Kegg)-based tool that provides a friendly graphical environment for analysing gene-enrichment. The tool integrates two statistical corrections and simultaneously analysing the information about many groups of genes in both visual and textual manner. We tested the usefulness of our approach on a previous analysis (Huttenshower et al.). Furthermore, our tool is freely available (http://www.upo.es/eps/bigs/cargene.html).

[1]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[2]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[3]  Eckart Zitzler,et al.  BicAT: a biclustering analysis toolbox , 2006, Bioinform..

[4]  Handbook of Parametric and Nonparametric Statistical Procedures , 2004 .

[5]  W. Wong,et al.  GoSurfer: a graphical interactive tool for comparative analysis of large gene sets in Gene Ontology space. , 2004, Applied bioinformatics.

[6]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[7]  David Bryant,et al.  DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists , 2007, Nucleic Acids Res..

[8]  Pádraig Cunningham,et al.  Extending bicluster analysis to annotate unclassified ORFs and predict novel functional modules using expression data , 2008, BMC Genomics.

[9]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[10]  Francisco Azuaje,et al.  Machaon CVE: cluster validation for gene expression data , 2003, Bioinform..

[11]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[12]  S. Young,et al.  p Value Adjustments for Multiple Tests in Multivariate Binomial Models , 1989 .

[13]  Ron Shamir,et al.  EXPANDER – an integrative program suite for microarray data analysis , 2005, BMC Bioinformatics.

[14]  D. Altman,et al.  Multiple significance tests: the Bonferroni method , 1995, BMJ.

[15]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[16]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[17]  Tatsuya Akutsu,et al.  KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains , 2004, Nucleic Acids Res..

[18]  Falk Schreiber,et al.  Dynamic exploration and editing of KEGG pathway diagrams , 2007, Bioinform..

[19]  Francis D. Gibbons,et al.  Judging the quality of gene expression-based clustering methods using gene annotation. , 2002, Genome research.

[20]  Roberto Marcondes Cesar Junior,et al.  Inference from Clustering with Application to Gene-Expression Microarrays , 2002, J. Comput. Biol..

[21]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[22]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[23]  Olga G. Troyanskaya,et al.  Nearest Neighbor Networks: clustering expression data based on gene neighborhoods , 2007, BMC Bioinformatics.

[24]  Chris Sander,et al.  Characterizing gene sets with FuncAssociate , 2003, Bioinform..

[25]  Eric Altermann,et al.  PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database , 2005, BMC Genomics.

[26]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[27]  Francisco Azuaje,et al.  A cluster validity framework for genome expression data , 2002, Bioinform..

[28]  Richard M. Karp,et al.  Discovering local structure in gene expression data: the order-preserving submatrix problem , 2002, RECOMB '02.

[29]  Sven Bergmann,et al.  Iterative signature algorithm for the analysis of large-scale gene expression data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[32]  Ron Shamir,et al.  CLICK and EXPANDER: a system for clustering and visualizing gene expression data , 2003, Bioinform..

[33]  ThieleLothar,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006 .

[34]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[35]  G H Ball,et al.  A clustering technique for summarizing multivariate data. , 1967, Behavioral science.

[36]  Léon Personnaz,et al.  Enrichment or depletion of a GO category within a class of genes: which test? , 2007, Bioinform..

[37]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[38]  Ron Shamir,et al.  Scoring clustering solutions by their biological relevance , 2003, Bioinform..

[39]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..