1 5 O ct 2 01 9 Number of directions determined by a set in F 2 q and growth in Aff ( F q )

<jats:p>We prove that a set <jats:italic>A</jats:italic> of at most <jats:italic>q</jats:italic> non-collinear points in the finite plane <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbb {F}_{q}^{2}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mrow> <mml:mi>q</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math></jats:alternatives></jats:inline-formula> spans more than <jats:inline-formula><jats:alternatives><jats:tex-math>$${|A|}/\!{\sqrt{q}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>A</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>/</mml:mo> <mml:mspace /> <mml:msqrt> <mml:mi>q</mml:mi> </mml:msqrt> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> directions: this is based on a lower bound by Fancsali et al. which we prove again together with a different upper bound than the one given therein. Then, following the procedure used by Rudnev and Shkredov, we prove a new structural theorem about slowly growing sets in <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathrm {Aff}(\mathbb {F}_{q})$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Aff</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for any finite field <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbb {F}_{q}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>, generalizing the analogous results by Helfgott, Murphy, and Rudnev and Shkredov over prime fields.</jats:p>

[1]  A. Cauchy Oeuvres complètes: Recherches sur les nombres , 2009 .

[2]  Hannah Morgan,et al.  On Directions Determined by Subsets of Vector Spaces over Finite Fields , 2010, Integers.

[3]  B. Murphy Upper and lower bounds for rich lines in grids , 2017, American Journal of Mathematics.

[4]  H. A. Helfgott,et al.  Growth in groups: ideas and perspectives , 2013, 1303.0239.

[5]  Ben Green,et al.  The structure of approximate groups , 2011, Publications mathématiques de l'IHÉS.

[6]  Le Anh Vinh,et al.  The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields , 2007, Eur. J. Comb..

[7]  Tamás Szőonyi On the Number of Directions Determined by a Set of Points in an Affine Galois Plane , 1996 .

[8]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[9]  Noga Alon,et al.  Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..

[10]  L. Pyber,et al.  Growth in linear groups , 2012, 1208.2538.

[11]  Aart Blokhuis,et al.  On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.

[12]  Tamás Szonyi Around Rédei's theorem , 1999, Discret. Math..

[13]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[14]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[15]  Imre Z. Ruzsa,et al.  Sums of Finite Sets , 1996 .

[16]  Harold Davenport,et al.  On the Addition of Residue Classes , 1935 .

[17]  H. Helfgott,et al.  Growth in solvable subgroups of $${{\mathrm{GL}}}_r({\mathbb {Z}}/p{\mathbb {Z}})$$GLr(Z/pZ) , 2014 .

[18]  Shubhangi Saraf,et al.  Incidence Bounds for Block Designs , 2014, SIAM J. Discret. Math..

[19]  I. Shkredov,et al.  On growth rate in $SL_2(\mathbf{F}_p)$, the affine group and sum-product type implications , 2018, 1812.01671.