1 5 O ct 2 01 9 Number of directions determined by a set in F 2 q and growth in Aff ( F q )
暂无分享,去创建一个
[1] A. Cauchy. Oeuvres complètes: Recherches sur les nombres , 2009 .
[2] Hannah Morgan,et al. On Directions Determined by Subsets of Vector Spaces over Finite Fields , 2010, Integers.
[3] B. Murphy. Upper and lower bounds for rich lines in grids , 2017, American Journal of Mathematics.
[4] H. A. Helfgott,et al. Growth in groups: ideas and perspectives , 2013, 1303.0239.
[5] Ben Green,et al. The structure of approximate groups , 2011, Publications mathématiques de l'IHÉS.
[6] Le Anh Vinh,et al. The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields , 2007, Eur. J. Comb..
[7] Tamás Szőonyi. On the Number of Directions Determined by a Set of Points in an Affine Galois Plane , 1996 .
[8] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[9] Noga Alon,et al. Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..
[10] L. Pyber,et al. Growth in linear groups , 2012, 1208.2538.
[11] Aart Blokhuis,et al. On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.
[12] Tamás Szonyi. Around Rédei's theorem , 1999, Discret. Math..
[13] M. Kneser,et al. Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .
[14] Donald E. Knuth,et al. Big Omicron and big Omega and big Theta , 1976, SIGA.
[15] Imre Z. Ruzsa,et al. Sums of Finite Sets , 1996 .
[16] Harold Davenport,et al. On the Addition of Residue Classes , 1935 .
[17] H. Helfgott,et al. Growth in solvable subgroups of $${{\mathrm{GL}}}_r({\mathbb {Z}}/p{\mathbb {Z}})$$GLr(Z/pZ) , 2014 .
[18] Shubhangi Saraf,et al. Incidence Bounds for Block Designs , 2014, SIAM J. Discret. Math..
[19] I. Shkredov,et al. On growth rate in $SL_2(\mathbf{F}_p)$, the affine group and sum-product type implications , 2018, 1812.01671.