Multigrid methods with Powell–Sabin splines

This paper presents a multigrid algorithm for the solution of the linear systems that arise from a finite-element discretization of second-order elliptic partial differential equations with Powell-Sabin (PS) splines. We show that the method yields a uniform convergence in the l 2 -norm which is independent of the mesh size. We also briefly consider the use of PS splines for the fourth-order biharmonic problem.

[1]  Adhemar Bultheel,et al.  C 1 hierarchical Riesz bases of Lagrange type on Powell-Sabin triangulations , 2006 .

[2]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[3]  Ulrich Reif,et al.  Multigrid methods with web-splines , 2002, Numerische Mathematik.

[4]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[5]  Hong Dong,et al.  Spaces of bivariate spline functions over triangulation , 1991 .

[6]  Adhemar Bultheel,et al.  Powell-Sabin spline Wavelets , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[7]  Hong Qin,et al.  A C1 Globally Interpolatory Spline of Arbitrary Topology , 2005, VLSM.

[8]  Adhemar Bultheel,et al.  Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..

[9]  Larry L. Schumaker,et al.  The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1 , 1987 .

[10]  Hendrik Speleers,et al.  Local subdivision of Powell-Sabin splines , 2006, Comput. Aided Geom. Des..

[11]  Adhemar Bultheel,et al.  On the stability of normalized Powell-Sabin B-splines , 2004 .

[12]  P. Oswald,et al.  Hierarchical conforming finite element methods for the biharmonic equation , 1992 .

[13]  Larry L. Schumaker,et al.  On the approximation power of bivariate splines , 1998, Adv. Comput. Math..

[14]  Densely algebraic bounds for the exponential function , 2006 .

[15]  C. Manni Shape Control in Powell-Sabin Quasi-Interpolation , 2007 .

[16]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[17]  Paul Dierckx,et al.  Smoothing scattered data with a monotone Powell-Sabin spline surface , 2005, Numerical Algorithms.

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[20]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[21]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[22]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[23]  G. Strang Piecewise polynomials and the finite element method , 1973 .

[24]  Larry L. Schumaker,et al.  Smooth macro-elements on Powell-Sabin-12 splits , 2005, Math. Comput..