Estimating Quantum Entropy

The entropy of a quantum system is a measure of its randomness and is useful in quantifying entanglement. We study the problem of measuring the von Neumann and Rényi entropies of an unknown mixed quantum state given access to independent copies of the state. For Rényi entropy of integral order exceeding one, we determine the order-optimal copy complexity and show that it is strictly lower than the number of copies required to learn the underlying state. The main technical innovation is a concentration result for certain polynomials that arise in the Kerov algebra of Young diagrams, which is proven using the cycle structure of compositions of certain types of permutations. For von Neumann entropy and Rényi entropy of non-integral orders, we provide upper and lower bounds on the sample complexity of the Empirical Young Diagram (EYD) algorithm, which is the analogue of the empirical plug-in estimator in classical estimation.

[1]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[2]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[3]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[4]  J. Cardy Measuring Quantum Entanglement , 2012 .

[5]  Yanjun Han,et al.  Minimax estimation of the L1 distance , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[6]  Alain Lascoux,et al.  Branching rules for symmetric functions and sln basic hypergeometric series , 2011, Adv. Appl. Math..

[7]  Nathan Linial,et al.  On the Lipschitz constant of the RSK correspondence , 2012, J. Comb. Theory, Ser. A.

[8]  Richard Jozsa,et al.  Quantum conditional query complexity , 2017, Quantum Inf. Comput..

[9]  Ryan O'Donnell,et al.  Efficient quantum tomography , 2015, STOC.

[10]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[12]  Avinatan Hassidim,et al.  Quantum Algorithms for Testing Properties of Distributions , 2009, IEEE Transactions on Information Theory.

[13]  Himanshu Tyagi,et al.  Estimating Renyi Entropy of Discrete Distributions , 2014, IEEE Transactions on Information Theory.

[14]  Himanshu Tyagi,et al.  The Complexity of Estimating Rényi Entropy , 2015, SODA.

[15]  Hoi-Kwong Lo Quantum coding theorem for mixed states , 1995 .

[16]  A. Harrow Applications of coherent classical communication and the schur transform to quantum information theory , 2005, quant-ph/0512255.

[17]  Yingbin Liang,et al.  Estimation of KL divergence between large-alphabet distributions , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[18]  Pawel Wocjan,et al.  Weak Fourier-Schur Sampling, the Hidden Subgroup Problem, and the Quantum Collision Problem , 2007, STACS.

[19]  Ronald de Wolf,et al.  A Survey of Quantum Property Testing , 2013, Theory Comput..

[20]  L. Henderson Measuring Quantum Entanglement , 2002 .

[21]  Yanjun Han,et al.  Minimax Estimation of Functionals of Discrete Distributions , 2014, IEEE Transactions on Information Theory.

[22]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[23]  Ryan O'Donnell,et al.  Efficient quantum tomography II , 2015, STOC.

[24]  L. Mattner Mean absolute deviations of sample means and minimally concentrated binomials , 2003 .

[25]  Ryan O'Donnell,et al.  Quantum state certification , 2017, STOC.

[26]  Grigori Olshanski,et al.  Shifted Schur Functions , 1996 .

[27]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[28]  Ronald de Wolf,et al.  New Results on Quantum Property Testing , 2010, FSTTCS.

[29]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[30]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[31]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[32]  Proposal Draft How to learn a quantum state , 2015 .

[33]  Ryan O'Donnell,et al.  Guest Column: A Primer on the Statistics of Longest Increasing Subsequences and Quantum States (Shortened Version) , 2017, SIGA.

[34]  R. Muirhead Some Methods applicable to Identities and Inequalities of Symmetric Algebraic Functions of n Letters , 1902 .

[35]  G. Olshanski,et al.  Kerov’s Central Limit Theorem for the Plancherel Measure on Young Diagrams , 2003, math/0304010.

[36]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[37]  Ashley Montanaro,et al.  Optimal Verification of Entangled States with Local Measurements. , 2017, Physical review letters.

[38]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[39]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[40]  Alon Orlitsky,et al.  A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions , 2017, ICML.

[41]  Xiaodi Wu,et al.  Quantum Query Complexity of Entropy Estimation , 2017, IEEE Transactions on Information Theory.

[42]  Charles Thomas Hepler ON THE COMPLEXITY OF COMPUTING CHARACTERS OF FINITE GROUPS , 1994 .

[43]  Y. Klimontovich Thermodynamics of Chaotic Systems — An introduction , 1994 .

[44]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[45]  Gregory Valiant,et al.  Estimating the unseen: an n/log(n)-sample estimator for entropy and support size, shown optimal via new CLTs , 2011, STOC '11.

[46]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[47]  Robert Alicki,et al.  Symmetry properties of product states for the system of N n‐level atoms , 1988 .

[48]  M. Christandl The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography , 2006, quant-ph/0604183.

[49]  Yihong Wu,et al.  Chebyshev polynomials, moment matching, and optimal estimation of the unseen , 2015, The Annals of Statistics.

[50]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[51]  Ryan O'Donnell,et al.  Quantum Spectrum Testing , 2015, Communications in Mathematical Physics.

[52]  Yihong Wu,et al.  Minimax Rates of Entropy Estimation on Large Alphabets via Best Polynomial Approximation , 2014, IEEE Transactions on Information Theory.

[53]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[54]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[55]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[56]  Alon Orlitsky,et al.  On Modeling Profiles Instead of Values , 2004, UAI.

[57]  Yanjun Han,et al.  Minimax Estimation of Discrete Distributions Under $\ell _{1}$ Loss , 2014, IEEE Transactions on Information Theory.

[58]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.