Soliton solutions for a negative order non-isospectral AKNS equation

Abstract In this paper, the bilinear form of a negative order non-isospectral AKNS equation is given. The soliton solutions are obtained through Hirota’s direct method and the Wronskian technique, respectively.

[1]  Wenxiu Ma,et al.  A second Wronskian formulation of the Boussinesq equation , 2009 .

[2]  Chen DenYuan,et al.  New double Wronskian solutions of the AKNS equation , 2008 .

[3]  S. Sirianunpiboon,et al.  A note on the wronskian form of solutions of the KdV equation , 1988 .

[4]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[5]  S. Lou Abundant symmetries for the 1+1 dimensional classical Liouville field theory , 1994 .

[6]  Z. Qiao Negative order MKdV hierarchy and a new integrable Neumann-like system , 2002, nlin/0201065.

[7]  Wenxiu Ma,et al.  Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations , 1992 .

[8]  Ruguang Zhou,et al.  Hierarchy of negative order equation and its Lax pair , 1995 .

[9]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[10]  W. Xue,et al.  A bilinear Bäcklund transformation and nonlinear superposition formula for the negative Volterra hierarchy , 2003 .

[11]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[12]  Emmanuel Yomba,et al.  Construction of new solutions to the fully nonlinear generalized Camassa-Holm equations by an indirect F function method , 2005 .

[13]  J. Nimmo,et al.  A bilinear Bäcklund transformation for the nonlinear Schrödinger equation , 1983 .

[14]  Sergei Sakovich,et al.  The Short Pulse Equation Is Integrable , 2005 .

[15]  Gegenhasi,et al.  On integrability of a (2+1)-dimensional MKdV-type equation , 2008 .

[16]  Yoshimasa Matsuno,et al.  The N-soliton solution of the Degasperis–Procesi equation , 2005, nlin/0511029.

[17]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[18]  J. Verosky,et al.  Negative powers of Olver recursion operators , 1991 .

[19]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[20]  J. C. Brunelli The short pulse hierarchy , 2005, nlin/0601015.

[21]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[22]  M. Shmakova,et al.  Hierarchy of lower Korteweg–de Vries equations and supersymmetry structure of Miura transformations , 1993 .

[23]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[24]  Soliton Solutions for a Negative Order AKNS Equation , 2008 .

[25]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[26]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[27]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[28]  S. Lou A (2+1)-dimensional extension for the sine-Gordon equation , 1993 .

[29]  Deng-yuan Chen,et al.  Soliton solutions to the 3rd nonisospectral AKNS system , 2006 .

[30]  Wen-Xiu Ma,et al.  AN APPLICATION OF THE CASORATIAN TECHNIQUE TO THE 2D TODA LATTICE EQUATION , 2008, 0804.0631.

[31]  Deng-yuan Chen,et al.  Negatons, positons, rational-like solutions and conservation laws of the Korteweg?de Vries equation with loss and non-uniformity terms , 2004 .

[32]  S. Lou,et al.  Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations , 1994 .

[33]  Allen Parker,et al.  On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.