Open-domain Factoid Question Answering via Knowledge Graph Search

We introduce a highly scalable approach for open-domain question answering with no dependence on any data set for surface form to logical form mapping or any linguistic analytic tool such as POS tagger or named entity recognizer. We define our approach under the Constrained Conditional Models framework which lets us scale up to a full knowledge graph with no limitation on the size. On a standard benchmark, we obtained near 4 percent improvement over the state-of-the-art in open-domain question answering task.

[1]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[2]  Mark Steedman,et al.  Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification , 2010, EMNLP.

[3]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[4]  Tomas Mikolov,et al.  RNNLM - Recurrent Neural Network Language Modeling Toolkit , 2011 .

[5]  Jason Weston,et al.  Large-scale Simple Question Answering with Memory Networks , 2015, ArXiv.

[6]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[7]  Dan Roth,et al.  Integer linear programming inference for conditional random fields , 2005, ICML.

[8]  Eunsol Choi,et al.  Scaling Semantic Parsers with On-the-Fly Ontology Matching , 2013, EMNLP.

[9]  Ming-Wei Chang,et al.  Structured learning with constrained conditional models , 2012, Machine Learning.

[10]  Alexander Yates,et al.  Large-scale Semantic Parsing via Schema Matching and Lexicon Extension , 2013, ACL.

[11]  Andrew Chou,et al.  Semantic Parsing on Freebase from Question-Answer Pairs , 2013, EMNLP.

[12]  Jonathan Berant,et al.  Semantic Parsing via Paraphrasing , 2014, ACL.

[13]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[14]  Dan Roth,et al.  The Importance of Syntactic Parsing and Inference in Semantic Role Labeling , 2008, CL.

[15]  Ming-Wei Chang,et al.  Driving Semantic Parsing from the World’s Response , 2010, CoNLL.

[16]  Xuchen Yao,et al.  Information Extraction over Structured Data: Question Answering with Freebase , 2014, ACL.

[17]  Raymond J. Mooney,et al.  Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus , 2007, ACL.

[18]  Wen-tau Yih Global Inference Using Integer Linear Programming , 2004 .

[19]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[20]  John M. Zelle,et al.  Using inductive logic programming to automate the construction of natural language parsers , 1996 .

[21]  Ye Zhang,et al.  A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification , 2015, IJCNLP.