Regularizing GRAPPA using simultaneous sparsity to recover de-noised images

To enable further acceleration of magnetic resonance (MR) imaging, compressed sensing (CS) is combined with GRAPPA, a parallel imaging method, to reconstruct images from highly undersampled data with significantly improved RMSE compared to reconstructions using GRAPPA alone. This novel combination of GRAPPA and CS regularizes the GRAPPA kernel computation step using a simultaneous sparsity penalty function of the coil images. This approach can be implemented by formulating the problem as the joint optimization of the least squares fit of the kernel to the ACS lines and the sparsity of the images generated using GRAPPA with the kernel.

[1]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[5]  M. Bydder,et al.  A nonlinear regularization strategy for GRAPPA calibration. , 2009, Magnetic resonance imaging.

[6]  Stefan Skare,et al.  Comparison of reconstruction accuracy and efficiency among autocalibrating data‐driven parallel imaging methods , 2008, Magnetic resonance in medicine.

[7]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[8]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[9]  Dominique Cansell,et al.  B Method , 2006, The Seventeen Provers of the World.

[10]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[11]  Peter M. Jakob,et al.  AUTO-SMASH: A self-calibrating technique for SMASH imaging , 1998, Magnetic Resonance Materials in Physics, Biology and Medicine.

[12]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[13]  Leo Grady,et al.  Evaluating sparsity penalty functions for combined compressed sensing and parallel MRI , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[14]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[15]  Mark A. Griswold,et al.  AUTO-SMASH: A self-calibrating technique for SMASH imaging , 1998 .

[16]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[17]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[18]  Leo Grady,et al.  Combined compressed sensing and parallel mri compared for uniform and random cartesian undersampling of K-space , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  K. Kwong,et al.  Parallel imaging reconstruction using automatic regularization , 2004, Magnetic resonance in medicine.

[20]  Michael A. Saunders,et al.  LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..

[21]  L. L. Wald,et al.  SpRING : Sparse Reconstruction of Images using the Nullspace method and GRAPPA , 2010 .

[22]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[23]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[24]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[25]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[26]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .