Performance of different microstructure on electrochemical behaviors of laser solid formed Ti–6Al–4V alloy in NaCl solution

[1]  Xin Lin,et al.  Effect of stress-relief annealing on anodic dissolution behaviour of additive manufactured Ti-6Al-4V via laser solid forming , 2019, Corrosion Science.

[2]  Xin Lin,et al.  Electrochemical behaviour of laser solid formed Ti–6Al–4V alloy in a highly concentrated NaCl solution , 2018, Corrosion Science.

[3]  Xin Lin,et al.  Distinction in anodic dissolution behavior on different planes of laser solid formed Ti-6Al-4V alloy , 2018, Electrochimica Acta.

[4]  A. Rajadurai,et al.  Performance analysis of process parameters on machining α–β titanium alloy in electrochemical micromachining process , 2018 .

[5]  Xin Lin,et al.  Microstructure and electrochemical anodic behavior of Inconel 718 fabricated by high-power laser solid forming , 2018, Electrochimica Acta.

[6]  Xin Lin,et al.  Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure , 2018 .

[7]  Xin Lin,et al.  Distinction in Anodic Dissolution Behavior of Inconel 718 Prepared by Different Forming Technologies , 2018 .

[8]  Wei Zhang,et al.  Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy , 2017 .

[9]  G. P. Zhang,et al.  Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy , 2017 .

[10]  Yongming Ren,et al.  Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming , 2017 .

[11]  A. Fattah‐alhosseini,et al.  The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution. , 2017, Materials science & engineering. C, Materials for biological applications.

[12]  Weidong Huang,et al.  Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy , 2016 .

[13]  Guanghui Cao,et al.  Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition , 2016 .

[14]  Lai‐Chang Zhang,et al.  Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys. , 2016, Materials science & engineering. C, Materials for biological applications.

[15]  Xuezhen Chen,et al.  Electrochemical Machining of High-temperature Titanium Alloy Ti60☆ , 2016 .

[16]  M. Stolpe,et al.  Electrochemical Dissolution Behavior of Titanium and Titanium-based Alloys in Different Electrolytes , 2016 .

[17]  L. Neelakantan,et al.  Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions , 2016 .

[18]  Qimeng Chen,et al.  Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution , 2016 .

[19]  Xuezhen Chen,et al.  Electrochemical machining of burn-resistant Ti40 alloy , 2015 .

[20]  A. W. Hassel,et al.  Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical impedance spectroscopy , 2012 .

[21]  M. Pagitsas,et al.  Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model , 2012 .

[22]  SeJin Ahn,et al.  Effects of solution temperature on the kinetic nature of passive film on Ni , 2012 .

[23]  A. Pilchak,et al.  Corrosion behavior of β titanium alloys for biomedical applications , 2011 .

[24]  H. Middleton,et al.  Investigation on passivity of titanium under steady-state conditions in acidic solutions , 2011 .

[25]  E. Seebauer,et al.  Measurement method for carrier concentration in TiO2 via the Mott-Schottky approach , 2011 .

[26]  Digby D. Macdonald,et al.  The history of the Point Defect Model for the passive state: A brief review of film growth aspects , 2011 .

[27]  W. Tsai,et al.  In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM , 2011 .

[28]  N. Birbilis,et al.  Revealing the relationship between grain size and corrosion rate of metals , 2010 .

[29]  A. Pilchak,et al.  Corrosion Behavior of Ti-6Al-4V with Different Thermomechanical Treatments and Microstructures , 2010 .

[30]  K. Janghorban,et al.  Structural evolution of Fe–50 at.% Al powders during mechanical alloying and subsequent annealing processes , 2010 .

[31]  Amauri Garcia,et al.  Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications , 2010 .

[32]  Xin Lin,et al.  Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy , 2009 .

[33]  I. Milošev,et al.  XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank's physiological solution , 2008 .

[34]  Amauri Garcia,et al.  Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications , 2008 .

[35]  D. Macdonald On the Existence of Our Metals-Based Civilization I. Phase-Space Analysis , 2006 .

[36]  D. Macdonald On the Existence of Our Metals-Based Civilization , 2006 .

[37]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[38]  D. Macdonald,et al.  An electrochemical impedance spectroscopic study of the passive state on Alloy-22 , 2006 .

[39]  Isolda Costa,et al.  Corrosion characterization of titanium alloys by electrochemical techniques , 2006 .

[40]  V. Stolyarov,et al.  Corrosion resistance of ultra fine-grained Ti , 2004 .

[41]  N. Ibriş,et al.  EIS study of Ti and its alloys in biological media , 2002 .

[42]  Donald Morgan Smyth,et al.  The Defect Chemistry of Metal Oxides , 2000 .

[43]  G. Lütjering,et al.  Property optimization through microstructural control in titanium and aluminum alloys , 1999 .

[44]  Carmelo Sunseri,et al.  In situ characterization of passive films on al-ti alloy by photocurrent and impedance spectroscopy , 1998 .

[45]  D. Gorse,et al.  A photoelectrochemical and ac impedance study of anodic titanium oxide films , 1998 .

[46]  D. Devilliers,et al.  Structure and composition of passive titanium oxide films , 1997 .

[47]  D. Macdonald The Point Defect Model for the Passive State , 1992 .

[48]  J. Bannard On the electrochemical machining of some titanium alloys in bromide electrolytes , 1976 .