A multishift QR iteration without computation of the shifts

Each iteration of the multishift QR algorithm of Bai and Demmel requires the computation of a “shift vector” defined bym shifts of the origin of the spectrum that control the convergence of the process. A common choice of shifts consists of the eigenvalues of the trailing principal submatrix of orderm, and current practice includes the computation of these eigenvalues in the determination of the shift vector. In this paper, we describe an algorithm based on the evaluation of the characteristic polynomial of a Hessenberg matrix, which directly produces the shift vector without computing eigenvalues. This algorithm is stable, more accurate, faster, and simpler than the current alternative. It also allows for a consistent shift strategy with dynamic adjustment of the number of shifts.

[1]  B. Parlett Laguerre's Method Applied to the Matrix Eigenvalue Problem , 1964 .

[2]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[3]  James Demmel,et al.  On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..

[4]  J. H. Wilkinson,et al.  Handbook for Automatic Computation. Vol II, Linear Algebra , 1973 .

[5]  A. Danilevskiy ON THE NUMERICAL SOLUTION OF THE SECULAR EQUATION , 1961 .

[6]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[7]  J. G. F. Francis,et al.  The QR Transformation - Part 2 , 1962, Comput. J..

[8]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[9]  Alston S. Householder,et al.  Handbook for Automatic Computation , 1960, Comput. J..

[10]  A. Melman Numerical solution of a secular equation , 1995 .

[11]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[14]  David S. Watkins,et al.  Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Le Verrier,et al.  Mémoire sur les variations séculaires des éléments des orbites : pour les sept planètes principales, Mercure, Vénus, la Terre, Mars, Jupiter, Saturne et Uranus , 1976 .

[17]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[18]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[20]  David W. Lewis,et al.  Matrix theory , 1991 .