Elimination Theory in Differential and Difference Algebra

Elimination theory is central in differential and difference algebra. The Wu-Ritt characteristic set method, the resultant and the Chow form are three fundamental tools in the elimination theory for algebraic differential or difference equations. In this paper, the authors mainly present a survey of the existing work on the theory of characteristic set methods for differential and difference systems, the theory of differential Chow forms, and the theory of sparse differential and difference resultants.

[1]  Xiao-Shan Gao,et al.  Ritt-Wu's Decomposition Algorithm and Geometry Theorem Proving , 1990, CADE.

[2]  Dongming Wang,et al.  An Elimination Method for Polynomial Systems , 1993, J. Symb. Comput..

[3]  Öystein Ore Formale Theorie der linearen Differentialgleichungen. (Erster Teil). , 1932 .

[4]  Changbo Chen,et al.  Algorithms for computing triangular decompositions of polynomial systems , 2011, ISSAC '11.

[5]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[6]  Gleb Pogudin,et al.  Bounds for Elimination of Unknowns in Systems of Differential-Algebraic Equations , 2016 .

[7]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[8]  Wei Li,et al.  Difference Chow form , 2013, 1308.2469.

[9]  Chun-Ming Yuan,et al.  New bounds and efficient algorithm for sparse difference resultant , 2018, ArXiv.

[10]  Victor Y. Pan,et al.  Improved algorithms for computing determinants and resultants , 2005, J. Complex..

[11]  Teresa Krick,et al.  The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..

[12]  Wei Li,et al.  Differential Chow varieties exist , 2015, J. Lond. Math. Soc..

[13]  Liu Ziming COHERENT, REGULAR AND SIMPLE SYSTEMS IN ZERO DECOMPOSITIONS OF PARTIAL DIFFERENTIAL SYSTEMS , 1999 .

[14]  Yong Luo,et al.  A characteristic set method for ordinary difference polynomial systems , 2009, J. Symb. Comput..

[15]  A. Rosenfeld Specializations in differential algebra , 1959 .

[16]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms II: Differential Systems , 2001, SNSC.

[17]  Hamid Maarouf,et al.  Unmixed-dimensional Decomposition of a Finitely Generated Perfect Differential Ideal , 2001, J. Symb. Comput..

[18]  Sonia L. Rueda Linear sparse differential resultant formulas , 2011 .

[19]  Giovanni Gallo,et al.  Efficient algorithms and bounds for Wu-Ritt characteristic sets , 1991 .

[20]  J. L. Doob,et al.  IDEAL THEORY AND ALGEBRAIC DIFFERENCE , 2010 .

[21]  Wenjun Wu,et al.  Basic principles of mechanical theorem proving in elementary geometries , 1986, Journal of Automated Reasoning.

[22]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[23]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..

[24]  Chenqi Mou,et al.  Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case , 2010, Comput. Math. Appl..

[25]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[26]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[27]  Dongming Wang,et al.  Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..

[28]  Xiao-Shan Gao,et al.  Sparse differential resultant for laurent differential polynomials , 2013, ACCA.

[29]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[30]  Wei Li,et al.  Partial differential Chow forms and a type of partial differential Chow varieties , 2017, Communications in Algebra.

[31]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[32]  Zhenbing Zeng,et al.  Differential elimination with Dixon resultants , 2012, Appl. Math. Comput..

[33]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[34]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[35]  James Freitag,et al.  Bertini theorems for differential algebraic geometry , 2012, 1211.0972.

[36]  David Eisenbud,et al.  Resultants and Chow forms via exterior syzygies , 2001, math/0111040.

[37]  Xiao-Shan Gao,et al.  Resolvent systems of difference polynomial ideals , 2006, ISSAC '06.

[38]  Oystein Ore Formale Theorie der linearen Differentialgleichungen. (Zweiter Teil). , 1932 .

[39]  A. V. Mikhalev,et al.  Differential and Difference Dimension Polynomials , 1998 .

[40]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[41]  Marc Moreno Maza,et al.  Computing differential characteristic sets by change of ordering , 2010, J. Symb. Comput..

[42]  Ju V Nesterenko Estimates for the Orders of Zeros of Functions of a Certain Class and Applications in the Theory of Transcendental Numbers , 1977 .

[43]  Xiao-Shan Gao,et al.  A characteristic set method for solving boolean equations and applications in cryptanalysis of stream ciphers* , 2008, J. Syst. Sci. Complex..

[44]  J. Jouanolou,et al.  Le formalisme du résultant , 1991 .

[45]  Hoon Hong Ore Subresultant Coefficients in Solutions , 2001, Applicable Algebra in Engineering, Communication and Computing.

[46]  Xiao-Shan Gao,et al.  Chow form for projective differential variety , 2012 .

[47]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[48]  W. Wu ON THE DECISION PROBLEM AND THE MECHANIZATION OF THEOREM-PROVING IN ELEMENTARY GEOMETRY , 2008 .

[49]  Xiao-Shan Gao,et al.  Sparse Differential Resultant for Laurent Differential Polynomials , 2015, Found. Comput. Math..

[50]  J. L. Doob,et al.  Systems of Algebraic Difference Equations , 1933 .

[51]  Giuseppa Carrà Ferro A Resultant Theory for Ordinary Algebraic Differential Equations , 1997, AAECC.

[52]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[53]  Xiao-Shan Gao,et al.  Sparse difference resultant , 2012, ISSAC '13.

[54]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[55]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[56]  Zhenyu Huang,et al.  Characteristic set algorithms for equation solving in finite fields , 2012, J. Symb. Comput..

[57]  J. Rafael Sendra,et al.  Linear complete differential resultants and the implicitization of linear DPPEs , 2010, J. Symb. Comput..

[58]  Irving Bentsen The existence of solutions of abstract partial difference polynomials. , 1971 .

[59]  Yong-Bin Li,et al.  Some Properties of Triangular Sets and Improvement Upon Algorithm CharSer , 2006, AISC.

[60]  Xiao-Shan Gao,et al.  Sparse difference resultant , 2013, ISSAC '13.

[61]  Yang Lu Searching dependency between algebraic equations: an algorithm applied to automated reasoning , 1994 .

[62]  Xiao-Shan Gao,et al.  Binomial difference ideals , 2017, J. Symb. Comput..

[63]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[64]  A. Cañada,et al.  Handbook of differential equations , 2004 .

[65]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[66]  P. Wilson,et al.  DISCRIMINANTS, RESULTANTS AND MULTIDIMENSIONAL DETERMINANTS (Mathematics: Theory and Applications) , 1996 .

[67]  Gleb Pogudin,et al.  Effective difference elimination and Nullstellensatz , 2017, 1712.01412.

[68]  Wen-tsün Wu,et al.  A constructive theory of differential algebraic geometry based on works of J.F. Ritt with particular applications to mechanical theorem-proving of differential geometries , 1987 .

[69]  Pablo Solernó,et al.  Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients , 2013, J. Complex..

[70]  John F. Canny,et al.  Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..

[71]  Lorenzo Robbiano,et al.  Computational Algebraic Geometry and Commutative Algebra : Cortona 1991 , 1993 .

[72]  Marc Chardin,et al.  Differential Resultants and Subresultants , 1991, FCT.

[73]  Alexey Ovchinnikov,et al.  New effective differential Nullstellensatz , 2014, ArXiv.

[74]  J. Canny,et al.  Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .

[75]  Patrice Philippon,et al.  Critères Pour L’indépendance Algébrique , 1986 .

[76]  Xiao-Shan Gao,et al.  Intersection theory in differential algebraic geometry: Generic intersections and the differential Chow form , 2010, Transactions of the American Mathematical Society.

[77]  Chenqi Mou,et al.  On the Chordality of Polynomial Sets in Triangular Decomposition in Top-Down Style , 2018, ISSAC.

[78]  Dongming Wang On the Connection Between Ritt Characteristic Sets and Buchberger–Gröbner Bases , 2016, Math. Comput. Sci..

[79]  Giuseppa Carrà Ferro,et al.  A Resultant Theory for the Systems of Two Ordinary Algebraic Differential Equations , 1997, Appl. Algebra Eng. Commun. Comput..

[80]  Gao Xiaoshan,et al.  RITT-WU'S CHARACTERISTIC SET METHOD FOR ORDINARY DIFFERENCE POLYNOMIAL SYSTEMS WITH ARBITRARY ORDERING , 2009 .

[81]  Chenqi Mou,et al.  Decomposing polynomial sets into simple sets over finite fields: The positive-dimensional case , 2013, Theor. Comput. Sci..

[82]  Ioannis Z. Emiris,et al.  On the Complexity of Sparse Elimination , 1996, J. Complex..

[83]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[84]  Wei Li,et al.  Computation of differential Chow forms for ordinary prime differential ideals , 2016, Adv. Appl. Math..

[85]  Jie Wang,et al.  Toric difference variety , 2016, J. Syst. Sci. Complex..

[86]  Oleg Golubitsky,et al.  On the generalized Ritt problem as a computational problem , 2009 .

[87]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933 .

[88]  Xiao-Shan Gao,et al.  Properties of Ascending Chains for Partial Difference Polynomial Systems , 2007, ASCM.

[89]  Dongming Wang,et al.  Decomposing Polynomial Systems into Simple Systems , 1998, J. Symb. Comput..

[90]  W. V. Hodge,et al.  Methods of algebraic geometry , 1947 .

[91]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.

[92]  Joris van der Hoeven,et al.  Characteristic set method for differential-difference polynomial systems , 2009, J. Symb. Comput..

[93]  Xiao-Shan Gao,et al.  Matrix Formulae of Differential Resultant for First Order Generic Ordinary Differential Polynomials , 2012, ASCM.