On Besov spaces modelled on Zygmund spaces

Working on the d-torus, we show that Besov spaces Bps(Lp(logL)a) modelled on Zygmund spaces can be described in terms of classical Besov spaces. Several other properties of spaces Bps(Lp(logL)a) are also established. In particular, in the critical case s=d/p, we characterize the embedding of Bpd/p(Lp(logL)a) into the space of continuous functions.

[1]  Tord Holmstedt,et al.  Interpolation of Quasi-Normed Spaces. , 1970 .

[2]  Tino Ullrich,et al.  On an Extreme Class of Real Interpolation Spaces , 2009 .

[3]  Hans-Gerd Leopold,et al.  Characterisations of function spaces of generalised smoothness , 2006 .

[4]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[5]  Fernando Cobos,et al.  Description of logarithmic interpolation spaces by means of the J-functional and applications , 2015 .

[6]  Thomas Kühn,et al.  Approximation and entropy numbers in Besov spaces of generalized smoothness , 2009, J. Approx. Theory.

[7]  Bohumír Opic,et al.  Real Interpolation with Logarithmic Functors and Reiteration , 2000, Canadian Journal of Mathematics.

[8]  Fernando Cobos,et al.  Approximation spaces, limiting interpolation and Besov spaces , 2015, J. Approx. Theory.

[9]  H. Triebel Theory Of Function Spaces , 1983 .

[10]  F. Cobos,et al.  Logarithmic Interpolation Spaces Between Quasi-Banach Spaces , 2007 .

[11]  L. Persson Interpolation with a parameter function. , 1986 .

[12]  A. Caetano,et al.  Local growth envelopes of spaces of generalized smoothness: the subcriticalcase , 2004 .

[13]  C. Bennett,et al.  Interpolation of operators , 1987 .

[14]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[15]  G. Kalyabin Criteria for the multiplicativity and for the imbedding into C of Besov-Lizorkin-Triebel type spaces , 1981 .

[16]  W. D. Evans,et al.  Real interpolation with logarithmic functors , 2002 .

[17]  H. Triebel Theory of Function Spaces III , 2008 .

[18]  Jan Gustavsson A function parameter in connection with interpolation of Banach spaces , 1978 .

[19]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[20]  Reiteration theorems for the K‐interpolation method in limiting cases , 2011 .

[21]  Ronald A. DeVore,et al.  Weak interpolation in Banach spaces , 1979 .

[22]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[23]  Mario Milman,et al.  Extrapolation theory: new results and applications , 2005, J. Approx. Theory.

[24]  H. Triebel The Structure of Functions , 2001 .

[25]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[26]  Colin Bennett,et al.  On Lorentz-Zygmund spaces , 1980 .

[27]  Susana D. Moura,et al.  Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers , 2004, J. Approx. Theory.

[28]  J. Peetre,et al.  Interpolation of compactness using Aronszajn-Gagliardo functors , 1989 .

[29]  Fernando Cobos,et al.  Hardy-Sobolev spaces and Besov spaces with a function parameter , 1988 .

[30]  Abstract and Concrete Logarithmic Interpolation Spaces , 2004 .

[31]  M. Cwikel K-divisibility of theK-functional and Calderón couples , 1984 .

[32]  F. Cobos,et al.  On Besov spaces of logarithmic smoothness and Lipschitz spaces , 2015 .

[33]  Ultrasymmetric sequence spaces in approximation theory , 2006 .