Attractors and noise: Twin drivers of decisions and multistability

Perceptual decisions are made not only during goal-directed behavior such as choice tasks, but also occur spontaneously while multistable stimuli are being viewed. In both contexts, the formation of a perceptual decision is best captured by noisy attractor dynamics. Noise-driven attractor transitions can accommodate a wide range of timescales and a hierarchical arrangement with "nested attractors" harbors even more dynamical possibilities. The attractor framework seems particularly promising for understanding higher-level mental states that combine heterogeneous information from a distributed set of brain areas.

[1]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[2]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[4]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[5]  Dietmar Plenz,et al.  Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches , 2009, PLoS Comput. Biol..

[6]  W Gerstner,et al.  Noise spectrum and signal transmission through a population of spiking neurons. , 1999, Network.

[7]  W. Newsome,et al.  Representation of an abstract perceptual decision in macaque superior colliculus. , 2004, Journal of neurophysiology.

[8]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[9]  Xiao-Jing Wang,et al.  Similarity Effect and Optimal Control of Multiple-Choice Decision Making , 2008, Neuron.

[10]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[11]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Romo,et al.  Sensing without Touching Psychophysical Performance Based on Cortical Microstimulation , 2000, Neuron.

[13]  Ranulfo Romo,et al.  across cortical areas Inaugural Article: Neural correlate of subjective sensory experience gradually builds up , 2006 .

[14]  Roger Ratcliff,et al.  The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.

[15]  Campbell Fw,et al.  Monocular alternation: a method for the investigation of pattern vision. , 1972 .

[16]  Yee-Joon Kim,et al.  Stochastic resonance in binocular rivalry , 2006, Vision Research.

[17]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[19]  A. Grinvald,et al.  Neuronal assemblies: Single cortical neurons are obedient members of a huge orchestra , 2003, Biopolymers.

[20]  Timothy D. Hanks,et al.  Microstimulation of macaque area LIP affects decision-making in a motion discrimination task , 2006, Nature Neuroscience.

[21]  P. Schwindt,et al.  Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. , 1989, Journal of neurophysiology.

[22]  P. D. Giudice,et al.  Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses , 2003, Journal of Physiology-Paris.

[23]  D. Amit,et al.  Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network , 2003, The European journal of neuroscience.

[24]  R. Romo,et al.  Neuronal Correlates of a Perceptual Decision in Ventral Premotor Cortex , 2004, Neuron.

[25]  Frans A. J. Verstraten,et al.  Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization , 2005, Vision Research.

[26]  Gustavo Deco,et al.  The encoding of alternatives in multiple-choice decision making , 2009, Proceedings of the National Academy of Sciences.

[27]  J. Gold,et al.  Representation of a perceptual decision in developing oculomotor commands , 2000, Nature.

[28]  Xiao-Jing Wang Decision Making in Recurrent Neuronal Circuits , 2008, Neuron.

[29]  M. Grabowecky,et al.  Long-Term Speeding in Perceptual Switches Mediated by Attention-Dependent Plasticity in Cortical Visual Processing , 2007, Neuron.

[30]  D. Heeger,et al.  Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry , 2000, Nature Neuroscience.

[31]  A. V. van den Berg,et al.  Multi-Timescale Perceptual History Resolves Visual Ambiguity , 2008, PloS one.

[32]  S. R. Lehky Binocular rivalry is not chaotic , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Katharina von Kriegstein,et al.  Encoding of Spectral Correlation over Time in Auditory Cortex , 2008, The Journal of Neuroscience.

[34]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[35]  R. Romo,et al.  Neuronal correlates of decision-making in secondary somatosensory cortex , 2002, Nature Neuroscience.

[36]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[37]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[38]  M. A. Smith,et al.  Correlations and brain states: from electrophysiology to functional imaging , 2009, Current Opinion in Neurobiology.

[39]  R. Romo,et al.  Perceptual detection as a dynamical bistability phenomenon: A neurocomputational correlate of sensation , 2007, Proceedings of the National Academy of Sciences.

[40]  Yehezkel Yeshurun,et al.  Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation , 2006, NeuroImage.

[41]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[42]  R. van Ee,et al.  Percept-choice sequences driven by interrupted ambiguous stimuli: a low-level neural model. , 2007, Journal of vision.

[43]  Rainer Goebel,et al.  Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States , 2002, The Journal of Neuroscience.

[44]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[45]  J. Gold,et al.  The Influence of Behavioral Context on the Representation of a Perceptual Decision in Developing Oculomotor Commands , 2003, The Journal of Neuroscience.

[46]  Jonathan A. Marshall,et al.  Neural model of temporal and stochastic properties of binocular rivalry , 2000, Neurocomputing.

[47]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[48]  Gustavo Deco,et al.  Stochastic dynamics as a principle of brain function , 2009, Progress in Neurobiology.

[49]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[50]  Christine Preibisch,et al.  Neural Correlates of Spontaneous Direction Reversals in Ambiguous Apparent Visual Motion , 2001, NeuroImage.

[51]  E. Rolls,et al.  Attention, short-term memory, and action selection: A unifying theory , 2005, Progress in Neurobiology.

[52]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[53]  N. Logothetis,et al.  Multistable phenomena: changing views in perception , 1999, Trends in Cognitive Sciences.

[54]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[55]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[56]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[57]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[58]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[59]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Dov Sagi,et al.  Opposite Neural Signatures of Motion-Induced Blindness in Human Dorsal and Ventral Visual Cortex , 2008, The Journal of Neuroscience.

[61]  S. Engel,et al.  Interocular rivalry revealed in the human cortical blind-spot representation , 2001, Nature.

[62]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[63]  R. van Ee,et al.  Visual Cortex Allows Prediction of Perceptual States during Ambiguous Structure-From-Motion , 2007, The Journal of Neuroscience.

[64]  Satoru Miyauchi,et al.  Discrete stochastic process underlying perceptual rivalry , 2003, Neuroreport.

[65]  Randolph Blake,et al.  Visual Motion Retards Alternations between Conflicting Perceptual Interpretations , 2003, Neuron.

[66]  Daniel Lehmann,et al.  Regulated Criticality in the Brain? , 1998, Adv. Complex Syst..

[67]  R. Romo,et al.  Neuronal correlates of subjective sensory experience , 2005, Nature Neuroscience.

[68]  Philipp Sterzer,et al.  Neural correlates of spontaneous direction reversals in ambiguous apparent visual-motion , 2001, NeuroImage.

[69]  Theodor Landis,et al.  Right parietal brain activity precedes perceptual alternation of bistable stimuli. , 2009, Cerebral cortex.

[70]  Ranulfo Romo,et al.  Flexible Control of Mutual Inhibition: A Neural Model of Two-Interval Discrimination , 2005, Science.

[71]  Gustavo Deco,et al.  Computational significance of transient dynamics in cortical networks , 2007, The European journal of neuroscience.

[72]  David A. Leopold,et al.  Neural correlates of perception measured with fMRI and microelectrodes , 2008 .

[73]  Walter J. Freeman,et al.  The Hebbian paradigm reintegrated: Local reverberations as internal representations , 1995, Behavioral and Brain Sciences.

[74]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[75]  E. Rolls,et al.  Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. , 2004, Cerebral cortex.

[76]  Jochen Braun,et al.  Bistable Perception Modeled as Competing Stochastic Integrations at Two Levels , 2009, PLoS Comput. Biol..

[77]  M. Dorris,et al.  Role of the Superior Colliculus in Choosing Mixed-Strategy Saccades , 2009, The Journal of Neuroscience.

[78]  Nava Rubin,et al.  The oblique plaid effect , 2004, Vision Research.

[79]  Paul Miller,et al.  Stability of discrete memory states to stochastic fluctuations in neuronal systems. , 2006, Chaos.

[80]  C. Clifford,et al.  Mechanisms selectively engaged in rivalry: normal vision habituates, rivalrous vision primes , 2005, Vision Research.

[81]  Hugh R Wilson,et al.  Minimal physiological conditions for binocular rivalry and rivalry memory , 2007, Vision Research.

[82]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[83]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[84]  M. Mattia,et al.  Population dynamics of interacting spiking neurons. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  M. Shadlen,et al.  Representation of Confidence Associated with a Decision by Neurons in the Parietal Cortex , 2009, Science.

[86]  J Timothy Petersik,et al.  Buildup and Decay of a Three-Dimensional Rotational Aftereffect Obtained with a Three-Dimensional Figure , 2002, Perception.

[87]  John M. Beggs,et al.  Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004, The Journal of Neuroscience.

[88]  Philipp Sterzer,et al.  A neural basis for inference in perceptual ambiguity , 2007, Proceedings of the National Academy of Sciences.

[89]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[90]  Frans A. J. Verstraten,et al.  Attention Speeds Binocular Rivalry , 2006, Psychological science.

[91]  Medith Gm,et al.  Some attributive dimensions of reversibility phenomena and their relationship to rigidity and anxiety. , 1967 .

[92]  D. Zipser,et al.  A spiking network model of short-term active memory , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  Dario L Ringach,et al.  Spontaneous and driven cortical activity: implications for computation , 2009, Current Opinion in Neurobiology.

[94]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[95]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[96]  F. Fang,et al.  Cortical responses to invisible objects in the human dorsal and ventral pathways , 2005, Nature Neuroscience.

[97]  Rita Almeida,et al.  A biologically plausible model of time-scale invariant interval timing , 2009, Journal of Computational Neuroscience.

[98]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[99]  G. Rees,et al.  The Neural Bases of Multistable Perception , 2022 .

[100]  A. Kleinschmidt,et al.  Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[101]  D J Amit,et al.  Neural networks counting chimes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[102]  E. Miller,et al.  A Neural Circuit Model of Flexible Sensorimotor Mapping: Learning and Forgetting on Multiple Timescales , 2007, Neuron.

[103]  D Kleinfeld,et al.  Sequential state generation by model neural networks. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[104]  H Okamoto,et al.  Neural mechanism for a cognitive timer. , 2001, Physical review letters.

[105]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[106]  I. Fried,et al.  Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations , 2007, Current Biology.

[107]  N. RafaelLorenteDe,et al.  ANALYSIS OF THE ACTIVITY OF THE CHAINS OF INTERNUNCIAL NEURONS , 1938 .

[108]  J. Pettigrew,et al.  Plaid Motion Rivalry: Correlates with Binocular Rivalry and Positive Mood State , 2006, Perception.

[109]  R. Blake,et al.  Neural bases of binocular rivalry , 2006, Trends in Cognitive Sciences.

[110]  R. Ratcliff,et al.  Modeling confidence and response time in recognition memory. , 2009, Psychological review.

[111]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[112]  Leslie G. Ungerleider,et al.  The neural systems that mediate human perceptual decision making , 2008, Nature Reviews Neuroscience.

[113]  M. Weliky,et al.  Small modulation of ongoing cortical dynamics by sensory input during natural vision , 2004, Nature.

[114]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[115]  C. Summerfield,et al.  An information theoretical approach to prefrontal executive function , 2007, Trends in Cognitive Sciences.

[116]  P. Carmeliet,et al.  Object-based attention determines dominance in binocular rivalry , 2022 .

[117]  Joonyeol Lee,et al.  Spatial Attention and the Latency of Neuronal Responses in Macaque Area V4 , 2007, The Journal of Neuroscience.

[118]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[119]  J. Rinzel,et al.  Noise-induced alternations in an attractor network model of perceptual bistability. , 2007, Journal of neurophysiology.

[120]  Kanter,et al.  Temporal association in asymmetric neural networks. , 1986, Physical review letters.

[121]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[122]  F. Attneave Multistability in perception. , 1971, Scientific American.

[123]  Sabine Kastner,et al.  Neural correlates of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature Neuroscience.

[124]  J. Hueting,et al.  Individual and interindividual differences in binocular retinal rivalry in man. , 1966, Psychophysiology.

[125]  Xiao-Jing Wang,et al.  Probabilistic Decision Making by Slow Reverberation in Cortical Circuits , 2002, Neuron.

[126]  T. Mueller A physiological model of binocular rivalry , 1990, Visual Neuroscience.

[127]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[128]  Justin L. Vincent,et al.  Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Timothy D. Hanks,et al.  Bounded Integration in Parietal Cortex Underlies Decisions Even When Viewing Duration Is Dictated by the Environment , 2008, The Journal of Neuroscience.

[130]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[131]  M. A. Smith,et al.  Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[132]  R. Bogacz Optimal decision-making theories: linking neurobiology with behaviour , 2007, Trends in Cognitive Sciences.

[133]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[134]  J. Hupé,et al.  Temporal Dynamics of Auditory and Visual Bistability Reveal Common Principles of Perceptual Organization , 2006, Current Biology.

[135]  A. Borsellino,et al.  Reversal time distribution in the perception of visual ambiguous stimuli , 1972, Kybernetik.

[136]  Alexander Pastukhov,et al.  A short-term memory of multi-stable perception. , 2008, Journal of vision.

[137]  Raymond van Ee,et al.  Distributions of alternation rates in various forms of bistable perception. , 2005, Journal of vision.

[138]  KongFatt Wong-Lin,et al.  Neural Circuit Dynamics Underlying Accumulation of Time-Varying Evidence During Perceptual Decision Making , 2007, Frontiers Comput. Neurosci..

[139]  A. Parker,et al.  Perceptually Bistable Three-Dimensional Figures Evoke High Choice Probabilities in Cortical Area MT , 2001, The Journal of Neuroscience.

[140]  Randolph Blake,et al.  Traveling waves of activity in primary visual cortex during binocular rivalry , 2005, Nature Neuroscience.

[141]  D. Plenz,et al.  Homeostasis of neuronal avalanches during postnatal cortex development in vitro , 2008, Journal of Neuroscience Methods.

[142]  Alain Destexhe,et al.  Neuronal Computations with Stochastic Network States , 2006, Science.

[143]  Xiao-Jing Wang,et al.  Mean-Field Theory of Irregularly Spiking Neuronal Populations and Working Memory in Recurrent Cortical Networks , 2003 .

[144]  E. Seidemann,et al.  Optimal decoding of correlated neural population responses in the primate visual cortex , 2006, Nature Neuroscience.

[145]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[146]  Tomoki Fukai,et al.  Temporal integration by stochastic recurrent network dynamics with bimodal neurons. , 2007, Journal of neurophysiology.

[147]  Rainer Goebel,et al.  Activity patterns in human motion sensitive areas depend on the interpretation of global motion , 2001, NeuroImage.

[148]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[149]  R. Romo,et al.  Temporal Evolution of a Decision-Making Process in Medial Premotor Cortex , 2002, Neuron.

[150]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[151]  Anders Ledberg,et al.  Neurobiological Models of Two-Choice Decision Making Can Be Reduced to a One-Dimensional Nonlinear Diffusion Equation , 2008, PLoS Comput. Biol..

[152]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[153]  Alexander Maier,et al.  Perception of Temporally Interleaved Ambiguous Patterns , 2003, Current Biology.

[154]  I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. , 2001, The Behavioral and brain sciences.

[155]  H. Scheich,et al.  The BOLD Response in the Rat Hippocampus Depends Rather on Local Processing of Signals than on the Input or Output Activity. A Combined Functional MRI and Electrophysiological Study , 2009, The Journal of Neuroscience.

[156]  Philip L. Smith,et al.  Psychology and neurobiology of simple decisions , 2004, Trends in Neurosciences.

[157]  Philipp Sterzer,et al.  Responses of extrastriate cortex to switching perception of ambiguous visual motion stimuli , 2003, Neuroreport.

[158]  F. Tong,et al.  Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. , 2004, Journal of vision.

[159]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[160]  L. Abbott,et al.  A simple growth model constructs critical avalanche networks. , 2007, Progress in brain research.

[161]  Gustavo Deco,et al.  A Fluctuation-Driven Mechanism for Slow Decision Processes in Reverberant Networks , 2008, PloS one.

[162]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[163]  M. Shadlen,et al.  Neural Activity in Macaque Parietal Cortex Reflects Temporal Integration of Visual Motion Signals during Perceptual Decision Making , 2005, The Journal of Neuroscience.

[164]  S. R. Lehky An Astable Multivibrator Model of Binocular Rivalry , 1988, Perception.

[165]  Vincent Hayward,et al.  Tactile Rivalry Demonstrated with an Ambiguous Apparent-Motion Quartet , 2008, Current Biology.

[166]  W J Levelt,et al.  Note on the distribution of dominance times in binocular rivalry. , 1967, British journal of psychology.

[167]  James L. McClelland,et al.  Neural models of memory , 1999, Current Opinion in Neurobiology.

[168]  C. D. Weert,et al.  A test of Levelt's second proposition for binocular rivalry , 1993, Vision Research.

[169]  Emilio Salinas,et al.  Cognitive neuroscience: Flutter Discrimination: neural codes, perception, memory and decision making , 2003, Nature Reviews Neuroscience.

[170]  Riani,et al.  Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model. , 1994, Physical review letters.

[171]  Alan W Freeman,et al.  Multistage model for binocular rivalry. , 2005, Journal of neurophysiology.

[172]  Carson C. Chow,et al.  A Spiking Neuron Model for Binocular Rivalry , 2004, Journal of Computational Neuroscience.

[173]  Tomoki Fukai,et al.  Local cortical circuit model inferred from power-law distributed neuronal avalanches , 2007, Journal of Computational Neuroscience.

[174]  Ranulfo Romo,et al.  Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations , 2003, Current Opinion in Neurobiology.

[175]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[176]  Richard H. A. H. Jacobs,et al.  The time course of binocular rivalry reveals a fundamental role of noise. , 2006, Journal of vision.

[177]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[178]  G. Rees,et al.  Fine-scale activity patterns in high-level visual areas encode the category of invisible objects. , 2008, Journal of vision.

[179]  A. Grinvald,et al.  Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. , 2002, Journal of neurophysiology.

[180]  Raymond van Ee,et al.  Dynamics of perceptual bi-stability for stereoscopic slant rivalry and a comparison with grating, house-face, and Necker cube rivalry , 2005, Vision Research.

[181]  J. Orbach,et al.  Reversibility of the Necker Cube: I. An Examination of the Concept of “Satiation of Orientation” , 1963, Perceptual and motor skills.

[182]  Xiao-Jing Wang,et al.  Learning flexible sensori-motor mappings in a complex network , 2009, Biological Cybernetics.

[183]  Christopher J. Aura,et al.  Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey , 2008, Nature Neuroscience.

[184]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[185]  Motion-induced blindness in normal observers , 2022 .

[186]  D. Ringach,et al.  Topological analysis of population activity in visual cortex. , 2008, Journal of vision.

[187]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[188]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[189]  M. Breakspear,et al.  Bistability and Non-Gaussian Fluctuations in Spontaneous Cortical Activity , 2009, The Journal of Neuroscience.

[190]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[191]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[192]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[193]  Brendon O. Watson,et al.  Internal Dynamics Determine the Cortical Response to Thalamic Stimulation , 2005, Neuron.

[194]  J. Braun,et al.  Perceptual reversals need no prompting by attention. , 2007, Journal of vision.

[195]  M. Shadlen,et al.  Decision-making with multiple alternatives , 2008, Nature Neuroscience.

[196]  David A. Leopold,et al.  Stable perception of visually ambiguous patterns , 2002, Nature Neuroscience.

[197]  Doris Y. Tsao,et al.  Functional Connectivity of the Macaque Brain across Stimulus and Arousal States , 2009, The Journal of Neuroscience.

[198]  R. Deichmann,et al.  Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature.

[199]  R. Blake A Neural Theory of Binocular Rivalry , 1989 .

[200]  Timothy J Andrews,et al.  The Role of Voluntary and Involuntary Attention in Selecting Perceptual Dominance during Binocular Rivalry , 2007, Perception.

[201]  Gianluigi Mongillo,et al.  Selective delay activity in the cortex: phenomena and interpretation. , 2003, Cerebral cortex.

[202]  Andreas Kleinschmidt,et al.  Spontaneous local variations in ongoing neural activity bias perceptual decisions , 2008, Proceedings of the National Academy of Sciences.

[203]  R. Romo,et al.  Somatosensory discrimination based on cortical microstimulation , 1998, Nature.

[204]  R. Romo,et al.  Periodicity and Firing Rate As Candidate Neural Codes for the Frequency of Vibrotactile Stimuli , 2000, The Journal of Neuroscience.

[205]  Marcia Grabowecky,et al.  Evidence for Perceptual “Trapping” and Adaptation in Multistable Binocular Rivalry , 2002, Neuron.

[206]  R. Lorente ANALYSIS OF THE ACTIVITY OF THE CHAINS -OF INTERNUNCIAL NEURONS , 2004 .

[207]  C. Gallistel,et al.  Toward a neurobiology of temporal cognition: advances and challenges , 1997, Current Opinion in Neurobiology.

[208]  Karl J. Friston,et al.  A Hierarchy of Time-Scales and the Brain , 2008, PLoS Comput. Biol..

[209]  Hugh R Wilson,et al.  Computational evidence for a rivalry hierarchy in vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[210]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[211]  Emilio Salinas,et al.  Background Synaptic Activity as a Switch Between Dynamical States in a Network , 2003, Neural Computation.

[212]  Joachim M. Buhmann,et al.  Noise-driven temporal association in neural networks , 1987 .

[213]  Nava Rubin,et al.  Balance between noise and adaptation in competition models of perceptual bistability , 2009, Journal of Computational Neuroscience.