Ray matrix analysis of anamorphic fractional Fourier systems

In this work we extend the application of the ray matrix approach to analyse anamorphic fractional Fourier systems, i.e., fractional Fourier optical systems where the fractional power is different for two orthogonal directions. The application of the ray matrix approach allows for easily obtaining the properties of the optical system, and it is therefore a powerful tool to design and simplify complicated systems. For simplicity we consider fractional Fourier systems with real orders and systems without apertures. We start by presenting the analysis of some previously reported anamorphic Fourier and fractional Fourier systems, and we end by proposing a simple optical system with tunable anamorphic fractional orders that can be varied continuously without changing the input and output planes.

[1]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[2]  A. Gerrard,et al.  Introduction to Matrix Methods in Optics , 1975 .

[3]  Anamorphic correlator for character recognition. Detection of characters of different size , 1989 .

[4]  H. Arsenault,et al.  Rotation-variant optical data processing using the 2-D nonsymmetric Fourier transform. , 1985, Applied optics.

[5]  C. Ferreira,et al.  Anamorphic Multiple Matched Filter for Character Recognition, Performance with Signals of Equal Size , 1990 .

[6]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[7]  P. Andrés,et al.  Fraunhofer diffraction patterns from apertures illuminated with nonparallel light in nonsymmetrical Fourier transformers. , 1985, Applied optics.

[8]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[9]  T. Szoplik,et al.  Nonsymmetric Fourier transforming with an anamorphic system. , 1984, Applied optics.

[10]  Henri H. Arsenault,et al.  Matrix decompositions for nonsymmetrical optical systems , 1983 .

[11]  A. Thetford Introduction to Matrix Methods in Optics , 1976 .

[12]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[13]  A. Torre,et al.  Chapter 7 – The fractional Fourier transform and some of its applications to optics , 2002 .

[14]  Yeshaiahu Fainman,et al.  Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. , 2005, Optics express.

[15]  M. F. Erden,et al.  Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems , 1997 .

[16]  Zeev Zalevsky,et al.  Space-variant simultaneous detection of several objects by the use of multiple anamorphic fractional-Fourier-transform filters. , 1996, Applied optics.

[17]  David Mendlovic,et al.  Design of dynamically adjustable anamorphic fractional Fourier transformer , 1997 .

[18]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[19]  H. Yura,et al.  Optical beam wave propagation through complex optical systems , 1987 .

[20]  Carlos Ferreira,et al.  Teaching Fourier optics through ray matrices , 2005 .

[21]  Karlton Crabtree,et al.  Fractional Fourier transform optical system with programmable diffractive lenses. , 2003, Applied optics.

[22]  L. Bernardo ABCD MATRIX FORMALISM OF FRACTIONAL FOURIER OPTICS , 1996 .

[23]  M. Quintanilla,et al.  Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing , 2005 .

[24]  G Unnikrishnan,et al.  Fractional fourier domain encrypted holographic memory by use of an anamorphic optical system. , 2001, Applied optics.

[25]  L Hesselink,et al.  Analysis and design of an anamorphic optical processor for speckle metrology and velocimetry. , 1992, Applied optics.

[26]  H.K. Choi,et al.  High-power high-brightness GaInAsSb-AlGaAsSb tapered laser arrays with anamorphic collimating lenses emitting at 2.05 /spl mu/m , 1999, IEEE Photonics Technology Letters.

[27]  Johannes Courtial,et al.  Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes , 1999 .

[28]  Jeffrey A. Davis,et al.  Anamorphic optical systems using programmable spatial light modulators. , 1992, Applied optics.

[29]  D Mendlovic,et al.  Anamorphic fractional Fourier transform: optical implementation and applications. , 1995, Applied optics.

[30]  J. Goodman Introduction to Fourier optics , 1969 .

[31]  A. Pons,et al.  Application Of Anamorphic Systems To Directional Pseudocolor Encoding , 1988 .

[32]  P. Andrés,et al.  Nonsymmetrical fourier correlator to increase the angular discrimination in character recognition , 1986 .

[33]  H Ren,et al.  Image-scaling problem in the optical fractional Fourier transform. , 1997, Applied optics.

[34]  H. Ozaktas,et al.  Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators. , 1994, Optics letters.

[35]  H H Arsenault,et al.  A matrix representation for non-symmetrical optical systems , 1980 .

[36]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[37]  S C Esener,et al.  Motionless-head parallel-readout optical-disk system: experimental results. , 1995, Applied optics.