An Efficient Parallel Strategy for Computing K-Terminal Reliability and Finding Most Vital Edges in 2-Trees and Partial 2-Trees

In this paper, we first develop a parallel algorithm for computingK-terminal reliability, denoted byR(GK), in 2-trees. Based on this result, we can also computeR(GK) in partial 2-trees using a method that transforms, in parallel, a given partial 2-tree into a 2-tree. Finally, we solve the problem of finding most vital edges with respect toK-terminal reliability in partial 2-trees. Our algorithms takeO(logn) time withC(m,n) processors on a CRCW PRAM, whereC(m,n) is the number of processors required to find the connected components of a graph withmedges andnvertices in logarithmic time.

[1]  Selim G. Akl,et al.  Design and analysis of parallel algorithms , 1985 .

[2]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[3]  Michael O. Ball,et al.  Complexity of network reliability computations , 1980, Networks.

[4]  Lih-Hsing Hsu,et al.  Finding the most vital edge with respect to K-terminal reliability in series-parallel networks , 1993 .

[5]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[6]  A. Satyanarayana,et al.  Efficient algorithms for reliability analysis of planar networks - a survey , 1986, IEEE Transactions on Reliability.

[7]  Eugene L. Lawler,et al.  Linear-Time Computation of Optimal Subgraphs of Decomposable Graphs , 1987, J. Algorithms.

[8]  Robert E. Tarjan,et al.  An Efficient Parallel Biconnectivity Algorithm , 2011, SIAM J. Comput..

[9]  Joseph A. Wald,et al.  Steiner trees in probabilistic networks , 1983 .

[10]  Pawel Winter,et al.  Generalized Steiner Problem in Series-Parallel Networks , 1986, J. Algorithms.

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[13]  Darko Skorin-Kapov,et al.  NC Algorithms for Recognizing Partial 2-Trees and 3-Trees , 1991, SIAM J. Discret. Math..

[14]  Charles J. Colbourn,et al.  Steiner trees, partial 2-trees, and minimum IFI networks , 1983, Networks.

[15]  Stephen T. Hedetniemi,et al.  Linear-time Computability of Combinatorial Problems on Generalized-Series-Parallel Graphs , 1987 .

[16]  Shietung Peng,et al.  Parallel algorithms for k-tree recognition and its applications , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.

[17]  Richard Cole,et al.  Approximate Parallel Scheduling. II. Applications to Logarithmic-Time Optimal Parallel Graph Algorithms , 1991, Inf. Comput..

[18]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[19]  Donald S. Fussell,et al.  Finding Triconnected Components by Local Replacement , 1993, SIAM J. Comput..

[20]  David G. Kirkpatrick,et al.  A Simple Parallel Tree Contraction Algorithm , 1989, J. Algorithms.

[21]  Philip N. Klein Efficient Parallel Algorithms for Chordal Graphs , 1996, SIAM J. Comput..

[22]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[23]  David Eppstein,et al.  Parallel Recognition of Series-Parallel Graphs , 1992, Inf. Comput..

[24]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[25]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[26]  J. Scott Provan,et al.  The Complexity of Reliability Computations in Planar and Acyclic Graphs , 1986, SIAM J. Comput..

[27]  R. Duffin Topology of series-parallel networks , 1965 .

[28]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[29]  Xin He,et al.  Efficient Parallel Algorithms for Series Parallel Graphs , 1991, J. Algorithms.