Total positivity from a kind of lattice paths

Total positivity of matrices is deeply studied and plays an important role in various branches of mathematics. The main purpose of this paper is to study total positivity of a matrix $M=[M_{n,k}]_{n,k}$ generated by the weighted lattice paths in $\mathbb{N}^2$ from the origin $(0,0)$ to the point $(k,n)$ consisting of types of steps: $(0,1)$ and $(1,t+i)$ for $0\leq i\leq \ell$, where each step $(0,1)$ from height~$n-1$ gets the weight~$b_n(\textbf{y})$ and each step $(1,t+i)$ from height~$n-t-i$ gets the weight $a_n^{(i)}(\textbf{x})$. Using an algebraic method, we prove that the $\textbf{x}$-total positivity of the weight matrix $[a_i^{(i-j)}(\textbf{x})]_{i,j}$ implies that of $M$. Furthermore, using the Lindstr\"{o}m-Gessel-Viennot lemma, we obtain that both $M$ and the Toeplitz matrix of each row sequence of $M$ with $t\geq1$ are $\textbf{x}$-totally positive under the following three cases respectively: (1) $\ell=1$, (2) $\ell=2$ and restrictions for $a_n^{(i)}$, (3) general $\ell$ and both $a^{(i)}_n$ and $b_n$ are independent of $n$. In addition, for the case (3), we show that the matrix $M$ is a Riordan array, present its explicit formula and prove total positivity of the Toeplitz matrix of the each column of $M$. In particular, from the results for Toeplitz-total positivity, we also obtain the P\'olya frequency and log-concavity of the corresponding sequence. Finally, as applications, we in a unified manner establish total positivity and the Toeplitz-total positivity for many well-known combinatorial triangles, including the Pascal triangle, the Pascal square, the Delannoy triangle, the Delannoy square, the signless Stirling triangle of the first kind, the Legendre-Stirling triangle of the first kind, the Jacobi-Stirling triangle of the first kind, the Brenti's recursive matrix, and so on.

[1]  A. Bostan,et al.  Enumerative Combinatorics , 2023, Oberwolfach Reports.

[2]  Yi Wang,et al.  Yet another criterion for the total positivity of Riordan arrays , 2021, Linear Algebra and its Applications.

[3]  Bao-Xuan Zhu,et al.  Total Positivity from the Exponential Riordan Arrays , 2020, SIAM J. Discret. Math..

[4]  G. Lusztig Total Positivity in Reductive Groups , 2019 .

[5]  Yi Wang,et al.  Analytic aspects of Delannoy numbers , 2019, Discret. Math..

[6]  June Huh,et al.  Logarithmic concavity for morphisms of matroids , 2019, Advances in Mathematics.

[7]  Yi Wang,et al.  Notes on the total positivity of Riordan arrays , 2019, Linear Algebra and its Applications.

[8]  June Huh,et al.  Lorentzian polynomials , 2019, Annals of Mathematics.

[9]  Yi Wang,et al.  Total positivity of Narayana matrices , 2017, Discret. Math..

[10]  Qiongqiong Pan,et al.  On Total Positivity of Catalan-Stieltjes Matrices , 2016, Electron. J. Comb..

[11]  T. He,et al.  Row sums and alternating sums of Riordan arrays , 2016 .

[12]  Karim A. Adiprasito,et al.  Hodge theory for combinatorial geometries , 2015, Annals of Mathematics.

[13]  Xi Chen,et al.  Total positivity of Riordan arrays , 2015, Eur. J. Comb..

[14]  Xi Chen,et al.  Total positivity of recursive matrices , 2015, 1601.05645.

[15]  P. Brändén Unimodality, log-concavity, real-rootedness and beyond , 2015 .

[16]  José L. Ramírez,et al.  A Generalization of the $k$-Bonacci Sequence from Riordan Arrays , 2015, Electron. J. Comb..

[17]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .

[18]  Pietro Mongelli,et al.  Total positivity properties of Jacobi-Stirling numbers , 2012, Adv. Appl. Math..

[19]  June Huh,et al.  h-Vectors of matroids and logarithmic concavity , 2012, 1201.2915.

[20]  George E. Andrews,et al.  The Jacobi-Stirling numbers , 2011, J. Comb. Theory, Ser. A.

[21]  Pietro Mongelli,et al.  Combinatorial Interpretations of Particular Evaluations of Complete and Elementary Symmetric Functions , 2011, Electron. J. Comb..

[22]  George E. Andrews,et al.  The Legendre-Stirling numbers , 2011, Discret. Math..

[23]  Y. Kodama,et al.  KP solitons and total positivity for the Grassmannian , 2011, 1106.0023.

[24]  Y. Kodama,et al.  KP solitons, total positivity, and cluster algebras , 2011, Proceedings of the National Academy of Sciences.

[25]  Eric S. Egge,et al.  Legendre-Stirling permutations , 2010, Eur. J. Comb..

[26]  June Huh,et al.  Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs , 2010, 1008.4749.

[27]  P. Brand'en Iterated sequences and the geometry of zeros , 2009, 0909.1927.

[28]  George E. Andrews,et al.  A combinatorial interpretation of the Legendre-Stirling numbers , 2009 .

[29]  Renzo Sprugnoli,et al.  Sequence characterization of Riordan arrays , 2009, Discret. Math..

[30]  Jiang Zeng,et al.  Combinatorial Interpretations of the Jacobi-Stirling Numbers , 2009, Electron. J. Comb..

[31]  Hana Kim,et al.  A generalization of Lucas polynomial sequence , 2009, Discret. Appl. Math..

[32]  Yaming Yu,et al.  Confirming two conjectures of Su and Wang on binomial coefficients , 2009, Adv. Appl. Math..

[33]  Yi Wang,et al.  On Unimodality Problems in Pascal's Triangle , 2008, Electron. J. Comb..

[34]  Gangjoon Yoon,et al.  Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression , 2007 .

[35]  G. Lusztig A Survey of Total Positivity , 2007, 0705.3842.

[36]  Y. Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2006, J. Comb. Theory, Ser. A.

[37]  A. Postnikov Total positivity, Grassmannians, and networks , 2006, math/0609764.

[38]  G. Xin,et al.  Hankel determinants for some common lattice paths , 2006, Adv. Appl. Math..

[39]  Y. Yeh,et al.  Log-concavity and LC-positivity , 2005, J. Comb. Theory, Ser. A.

[40]  Cyril Banderier,et al.  Why Delannoy numbers? , 2004, ArXiv.

[41]  Lance L. Littlejohn,et al.  Legendre polynomials, Legendre--Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression , 2002 .

[42]  Marko Razpet,et al.  The Lucas property of a number array , 2002, Discret. Math..

[43]  K. Rietsch Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties , 2001, math/0112024.

[44]  S. Fomin,et al.  Total Positivity: Tests and Parametrizations , 1999, math/9912128.

[45]  Sergey Fomin,et al.  Double Bruhat cells and total positivity , 1998, math/9802056.

[46]  J. Hilgert,et al.  Introduction to total positivity , 1998 .

[47]  S. Fomin,et al.  Parametrizations of Canonical Bases and Totally Positive Matrices , 1996 .

[48]  Francesco Brenti,et al.  Combinatorics and Total Positivity , 1995, J. Comb. Theory A.

[49]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[50]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[51]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[52]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[53]  S. G. Mohanty,et al.  Lattice Path Counting and Applications. , 1980 .

[54]  T. V. Narayana,et al.  Lattice Path Combinatorics With Statistical Applications , 1979 .

[55]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[56]  I. Schoenberg Über variationsvermindernde lineare Transformationen , 1930 .

[57]  Lili Mu,et al.  On the Total Positivity of Delannoy-Like Triangles , 2017, J. Integer Seq..

[58]  Vladimir Zakharov Legendre polynomials , 2010, Finite Element Analysis.

[59]  Martin Aigner,et al.  Lattice Paths and Determinants , 2001, Computational Discrete Mathematics.

[60]  C. Krattenthaler,et al.  A remarkable formula for counting nonintersecting lattice paths in a ladder with respect to turns , 1999 .

[61]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[62]  安藤 毅 Totally positive matrices , 1984 .