A new shock tube study of the H + O2 → OH + O reaction rate using tunable diode laser absorption of H2O near 2.5 μm

Abstract The rate coefficient of the reaction H + O 2  → OH + O was determined using tunable diode laser absorption of H 2 O near 2.5 μm behind reflected shock waves over the temperature range 1100–1530 K, at approximately 2 atm. Detailed kinetic analysis of the recorded H 2 O temporal profiles yielded the rate coefficient expression: k  = (1.12 ± 0.08) × 10 14 exp [(−7805 ± 90)/ T ] cm 3  mol −1  s −1 , with estimated uncertainties of ±4.6% at 1500 K and ±8.8% at 1100 K. Excellent agreement between this study and that of Masten et al. (1990) was found in the overlapping temperature range. By combining the results of these two studies, the reaction rate coefficient over the range 1100–3370 K was found to be described well by: k = ( 1.04 ± 0.03 ) × 10 14 exp [ ( - 7705 ± 40 ) / T ] cm 3 mol - 1 s - 1 .

[1]  P. Frank,et al.  High temperature reaction rate for H+O2=OH+O and OH+H2=H2O+H , 1985 .

[2]  Hong Du,et al.  Rate coefficient for the reaction H+O2→OH+O: Results at high temperatures, 2000 to 5300 K , 1992 .

[3]  M. Frenklach,et al.  Determination of the rate coefficient for the reaction hydrogen atom + oxygen .fwdarw. hydrogen + oxygen atom by a shock tube/laser absorption/detailed modeling study , 1991 .

[4]  A. Konnov Remaining uncertainties in the kinetic mechanism of hydrogen combustion , 2008 .

[5]  K. S. Shin,et al.  Shock tube study of the rate coefficient of H + O2 → OH + O , 1994 .

[6]  Zhenwei Zhao,et al.  An updated comprehensive kinetic model of hydrogen combustion , 2004 .

[7]  Zekai Hong,et al.  Experimental study of the rate of OH + HO2 --> H2O + O2 at high temperatures using the reverse reaction. , 2010, The journal of physical chemistry. A.

[8]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[9]  Forman A. Williams,et al.  Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide , 2006 .

[10]  Branko Ruscic,et al.  On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl , 2002 .

[11]  Kenneth J. Witt,et al.  High temperature rate coefficient measurements of H + O2 chain-branching and chain-terminating reaction , 2005 .

[12]  K. S. Shin,et al.  Rate constants for the reactions H+O2→OH+O and D+O2→OD+O over the temperature range 1085–2278 K by the laser photolysis–shock tube technique , 1991 .

[13]  C. Westbrook,et al.  Chemical kinetic modeling of hydrocarbon combustion , 1984 .

[14]  Branko Ruscic,et al.  Active Thermochemical Tables: accurate enthalpy of formation of hydroperoxyl radical, HO2. , 2006, The journal of physical chemistry. A.

[15]  Michael J. Pilling,et al.  Unravelling combustion mechanisms through a quantitative understanding of elementary reactions , 2005 .

[16]  Garry L. Schott,et al.  Further studies of exponential branching rates in reflected-shock heated, nonstoichiometric H2COO2 systems , 1973 .

[17]  S. Ryu,et al.  Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature , 1995 .

[18]  J. Troe,et al.  Experimental and modelling study of the recombination reaction H + O(2) (+M) --> HO(2) (+M) between 300 and 900 K, 1.5 and 950 bar, and in the bath gases M = He, Ar, and N(2). , 2008, Physical chemistry chemical physics : PCCP.

[19]  D. D. Drysdale,et al.  Evaluated kinetic data for high temperature reactions , 1972 .

[20]  Laurence S. Rothman,et al.  HITRAN partition functions and weighted transition-moments squared , 2000 .

[21]  C. Westbrook,et al.  A comprehensive modeling study of hydrogen oxidation , 2004 .

[22]  Aamir Farooq,et al.  Hydrogen peroxide decomposition rate: a shock tube study using tunable laser absorption of H(2)O near 2.5 microm. , 2009, The journal of physical chemistry. A.

[23]  Genny A. Pang,et al.  The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves , 2009 .

[24]  Ronald K. Hanson,et al.  A shock tube study of the enthalpy of formation of OH , 2002 .

[25]  K. Westberg,et al.  Chemical Kinetic Data Sheets for High‐Temperature Chemical Reactions , 1983 .

[26]  Ronald K. Hanson,et al.  A shock tube study of OH + H(2)O(2) --> H(2)O + HO(2) and H(2)O(2) + M --> 2OH + M using laser absorption of H(2)O and OH. , 2010, The journal of physical chemistry. A.

[27]  Ronald K. Hanson,et al.  Shock tube study of the reaction hydrogen atom + oxygen .fwdarw. hydroxyl + oxygen atom using hydroxyl laser absorption , 1990 .

[28]  Ronald K. Hanson,et al.  Reexamination of Shock-Tube Measurements of the Rate Coefficient of H + O2 .fwdarw. OH + O , 1994 .