Static recrystallisation in an ODS FeAl alloy: The effect of particles on texture and anisotropic grain growth developments

Abstract Microstructure modifications associated with static recrystallisation in an Oxide Dispersion Strengthened alloy are investigated by using both experimental (Electron Back-scattered and X-ray Diffraction techniques) and simulation (Monte Carlo) approaches. The morphology of the grains issued from static recrystallisation is influenced significantly by the alignment of the oxide particles in the as-extruded starting material. Monte Carlo simulation is introduced to study the effect of particle distribution, particle alignment, initial grain size and shape on the morphological anisotropy developed in the recrystallised microstructure. Simulation results show significant correlation between grain shape anisotropy and particle availability in the alignment direction. The initial grain size criterion is associated with the separation length between aligned particles to obtain an efficient pinning effect. Grain shape anisotropy can be preserved if an efficient Zener pressure is coupled to an anisotropic grain growth.

[1]  James A. Glazier,et al.  Coarsening in the two-dimensional soap froth and the large-Q Potts model: A detailed comparison , 1990 .

[2]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[3]  H. Bhadeshia,et al.  Nonuniform recrystallization in a mechanically alloyed nickel-base superalloy , 1993 .

[4]  P. S. Sahni,et al.  Grain growth in two dimensions , 1983 .

[5]  D. Raabe,et al.  Optimisation of precipitation for controlling recrystallisation of wrought Fe3Al based alloys , 2005 .

[6]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[7]  O. Hunderi,et al.  On the Zener drag , 1985 .

[8]  E. Cerri,et al.  Effect of treatment temperature on the texture of mechanically alloyed Fe-40 at.% Al + Y2O3 intermetallic , 1999 .

[9]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[10]  F. Wagner,et al.  Texture and microstructure in very fine grain Al–Al3Ti alloys obtained by extrusion of mechanically alloyed powders , 2001 .

[11]  R. L. Goetz,et al.  Particle stimulated nucleation during dynamic recrystallization using a cellular automata model , 2005 .

[12]  Kenneth W. Neale,et al.  Analysis of texture evolution in magnesium during equal channel angular extrusion , 2008 .

[13]  J. Gang,et al.  Nanostructures in thermal spray coatings , 2003 .

[14]  Dorte Juul Jensen,et al.  Three-dimensional geometric simulations of random anisotropic growth during transformation phenomena , 2008 .

[15]  H. Bhadeshia,et al.  Recrystallisation of practical mechanically alloyed iron-base and nickel-base superalloys , 1997 .

[16]  R. L. Plaut,et al.  Characterization of the texture evolution during thermomechanical processing of an Fe-30at% Al-6at% Cr alloy , 2007 .

[17]  B. Verlinden,et al.  Recrystallization and grain growth in a B2 iron aluminide alloy , 1998 .

[18]  Professor Dr. Dietrich Stauffer,et al.  Computer Simulation and Computer Algebra , 1993, Springer Berlin Heidelberg.

[19]  I. Baker A review of the mechanical properties of B2 compounds , 1995 .

[20]  F. Wagner,et al.  Primary recrystallization in an ODS FeAl alloy: an effective way to modify texture and microstructure , 2004 .

[21]  N. Stoloff Iron aluminides: present status and future prospects , 1998 .

[22]  Xiaoyan Song,et al.  Modeling recrystallization in a material containing fine and coarse particles , 2007 .

[23]  D. G. Morris,et al.  Thermomechanical processing of mechanically-alloyed Fe-40Al and the influence on mechanical properties , 1997 .

[24]  G. Grest,et al.  Coarsening in Two-Dimensional Soap Froths and the Large-Q Potts Model , 1991 .

[25]  O. Hunderi,et al.  On grain boundary drag from second phase particles , 1983 .

[26]  S. Guessasma,et al.  Static Recrystallization of FeAl in the Presence of Second Phase Particles: Experimental and Modeling Investigations , 2004 .

[27]  I. Baker,et al.  Mechanical properties of FeAl , 1997 .

[28]  G. Gottstein,et al.  A cellular operator model for the simulation of static recrystallization , 2007 .

[29]  D. G. Morris,et al.  Deformation mechanics in a mechanically alloyed Fe40Al alloy and the influence of recrystallizing and ageing heat treatments , 1997 .

[30]  D. Raabe,et al.  2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning , 2005 .

[31]  Frédéric Barlat,et al.  Continuum Scale Simulation of Engineering Materials Fundamentals - Microstructures - Process Applications , 2004 .

[32]  P. S. Sahni,et al.  Computer simulation of grain growth—II. Grain size distribution, topology, and local dynamics , 1984 .

[33]  S. Zaefferer,et al.  Creation of Fine-grained and Deformed Structure with Fine Carbide Particles in a Fe3Al–Cr–Mo–C Alloy , 2006 .

[34]  L. Froyen,et al.  Recovery, recrystallization and grain growth in Fe3Al-based alloys , 2002 .

[35]  D. G. Morris,et al.  Strength and Ductility of Fe-40Al alloy prepared by mechanical alloying , 1996 .

[36]  A. Rollett,et al.  Monte Carlo simulation of elongated recrystallized grains in steels , 2005 .

[37]  D. G. Morris,et al.  High temperature structural coarsening of an ODS FeAl intermetallic , 2003 .

[38]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .

[39]  D. G. Morris,et al.  An analysis of strengthening mechanisms in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic , 2002 .