Anisotropic local high-confidence voting for accurate stereo correspondence

We present a local area-based, discontinuity-preserving stereo matching algorithm that achieves high quality results near depth discontinuities as well as in homogeneous regions. To address the well-known challenge of defining appropriate support windows for local stereo methods, we use the anisotropic Local Polynomial Approximation (LPA) - Intersection of Confidence Intervals (ICI) technique. It can adaptively select a nearoptimal anisotropic local neighborhood for each pixel in the image. Leveraging this robust pixel-wise shape-adaptive support window, the proposed stereo method performs a novel matching cost aggregation step and an effective disparity refinement scheme entirely within a local high-confidence voting framework. Evaluation using the benchmark Middlebury stereo database shows that our method outperforms other local stereo methods, and it is even better than some algorithms using advanced but computationally complicated global optimization techniques.

[1]  Jaakko Astola,et al.  Local Approximation Techniques in Signal and Image Processing (SPIE Press Monograph Vol. PM157) , 2006 .

[2]  Luc Van Gool,et al.  Combined Depth and Outlier Estimation in Multi-View Stereo , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Gauthier Lafruit,et al.  Fast Variable Center-Biased Windowing for High-Speed Stereo on Programmable Graphics Hardware , 2007, 2007 IEEE International Conference on Image Processing.

[4]  Margrit Gelautz,et al.  A layered stereo algorithm using image segmentation and global visibility constraints , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[5]  Gauthier Lafruit,et al.  High-Speed Stream-Centric Dense Stereo and View Synthesis on Graphics Hardware , 2007, 2007 IEEE 9th Workshop on Multimedia Signal Processing.

[6]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Gauthier Lafruit,et al.  Real-Time Stereo Using A Truncated Separable Laplacian Kernel Approximation On Programmable Graphics Hardware , 2007 .

[9]  Ruigang Yang,et al.  Image-gradient-guided real-time stereo on graphics hardware , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[10]  Emanuele Trucco,et al.  Efficient stereo with multiple windowing , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Karen O. Egiazarian,et al.  Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images , 2007, IEEE Transactions on Image Processing.

[12]  Richard Szeliski,et al.  Stereo Matching with Nonlinear Diffusion , 1998, International Journal of Computer Vision.

[13]  Sing Bing Kang,et al.  Stereo for Image-Based Rendering using Image Over-Segmentation , 2007, International Journal of Computer Vision.

[14]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[15]  Richard Szeliski,et al.  Handling occlusions in dense multi-view stereo , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  Olga Veksler,et al.  Stereo Correspondence with Compact Windows via Minimum Ratio Cycle , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Gérard G. Medioni,et al.  Stereo Using Monocular Cues within the Tensor Voting Framework , 2004, ECCV.

[18]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[19]  L. McMillan,et al.  Video enhancement using per-pixel virtual exposures , 2005, SIGGRAPH 2005.

[20]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Richard Szeliski,et al.  High-quality video view interpolation using a layered representation , 2004, SIGGRAPH 2004.

[22]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  Olga Veksler,et al.  Fast variable window for stereo correspondence using integral images , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[24]  Harry Shum,et al.  Stereo computation using radial adaptive windows , 2002, Object recognition supported by user interaction for service robots.