CRITICAL EVALUATION OF LOW-CARBON ELECTRICITY PRODUCTION TECHNOLOGIES

The current article provides critical evaluation of low-carbon electricity production technologies from Polish perspective. Five main evaluation criteria are proposed: I CO2 generation intensity, II electricity production capacity, III cost of electricity, IV perspectives for near-term deployment in Poland and V risks. Based on the results of the performed critical comparison four low-carbon electricity production technologies are recommended for Poland: (A) biogas, (B) wind, (C) fossil fuel/CCS and (D) solid biomass. Further, based on the formulated recommendations five specific emerging low-carbon power cycles, i.e. OG-SCLC-GT, MSG-GT, OR-FC, TCD-FC and OG-GT are briefly characterised. It is indicated that 'negative net CO2 emissions' from decarbonisation of biogas [6] is realistic and can be very important for decarbonisation of electricity production in Poland. Finally, it is emphasised that due to moderate CO2 generation intensity and complexity of other low-carbon technological options, natural gas can be recommended as a technological bridge to low-carbon future in Poland until at least 2030.

[1]  Antonio Valero,et al.  Exergy analysis as a tool for the integration of very complex energy systems: The case of carbonation/calcination CO2 systems in existing coal power plants , 2010 .

[2]  Wojciech M. Budzianowski,et al.  The effect of process factors on the reaction rate of catalytic combustion: Determination by a new method and a new reactor configuration , 2009 .

[3]  Wojciech M. Budzianowski,et al.  Auto‐thermal combustion of lean gaseous fuels utilizing a recuperative annular double‐layer catalytic converter , 2008 .

[4]  C. A. Pieńkowski,et al.  Rola odnawialnych źródeł energii w programie „Polityka energetyczna Polski do 2030 roku” , 2009 .

[5]  Jarosław Milewski,et al.  Solid oxide fuel cell fuelled by biogases , 2009 .

[6]  Xinping Zhou,et al.  Assessment of sustainable biomass resource for energy use in China , 2011 .

[7]  Wojciech M. Budzianowski,et al.  Parametric analysis of ammonia and carbon dioxide simultaneous desorption process , 2001 .

[8]  Konstantinos Boulouchos,et al.  Homogeneous combustion of fuel-lean H 2 / O 2 / N 2 mixtures over platinum at elevated pressures and preheats , 2011 .

[9]  Wojciech M. Budzianowski,et al.  Superadiabatic Lean Catalytic Combustion in a High-Pressure Reactor , 2009 .

[10]  Nazim Muradov,et al.  Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels , 2010 .

[11]  Ting-Wei Chiu,et al.  Hydrogen production from methane under the interaction of catalytic partial oxidation, water gas shi , 2010 .

[12]  Wojciech M. Budzianowski,et al.  Negative Net CO2 Emissions from Oxy-Decarbonization of Biogas to H2 , 2010 .

[13]  Dubravko Pevec,et al.  The potential of fission nuclear power in resolving global climate change under the constraints of nuclear fuel resources and once-through fuel cycles , 2010 .

[14]  J Kotowicz,et al.  Economic and environmental evaluation of selected advanced power generation technologies , 2011 .

[15]  Ahmad Fauzi Ismail,et al.  CO2 stripping from water through porous PVDF hollow fiber membrane contactor , 2011 .

[16]  Wojciech M. Budzianowski,et al.  An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane , 2010 .

[17]  Zheng Hu,et al.  Study on China's low carbon development in an Economy–Energy–Electricity–Environment framework , 2011 .

[18]  Wojciech M. Budzianowski,et al.  Analysis of the phase equilibrium in the system H2O-NH3-CO2 , 2003 .

[19]  Wojciech M. Budzianowski,et al.  Low-carbon power generation cycles: The feasibility of CO2 capture and opportunities for integration , 2011 .

[20]  Wojciech M. Budzianowski,et al.  Determination of parameters of a catalyst particle in non-stationary conditions , 2004 .

[21]  Wojciech M. Budzianowski,et al.  Process model of ammonia desorption from aqueous solutions containing carbon dioxide , 1999 .

[22]  Chanathip Pharino,et al.  Status and outlook for Thailand's low carbon electricity development , 2011 .

[23]  John R. Grace,et al.  In-situ CO2 capture in a pilot-scale fluidized-bed membrane reformer for ultra-pure hydrogen production , 2011 .

[24]  Wojciech M. Budzianowski,et al.  Ammonia removal from aqueous solutions containing carbon dioxide by stripping with air. Process model verification , 2000 .

[25]  Wojciech M. Budzianowski,et al.  Mass transfer in columns with modern packings of various types , 2003 .

[26]  Wojciech M. Budzianowski Mass-Recirculating Systems in CO2 Capture Technologies: A Review , 2010 .

[27]  Andrzej Teodorczyk,et al.  Scale effects on hydrogen-air fast deflagrations and detonations in small obstructed channels , 2008 .

[28]  Wojciech M. Budzianowski,et al.  Stripping of ammonia from aqueous solutions in the presence of carbon dioxide. Effect of negative enhancement of mass transfer. , 2005 .

[29]  I. Dincer,et al.  Energy analysis of hydrogen production using biogas-based electricity , 2011 .

[30]  Wojciech M. Budzianowski,et al.  Mitigating NH3 Vaporization from an Aqueous Ammonia Process for CO2 Capture , 2011 .

[31]  Wojciech M. Budzianowski,et al.  Effect of energy release and detailed surface mechanisms on multicomponent catalytic combustion , 2008 .