Crosshole traveltime tomography using particle swarm optimization: A near-surface field example

Particle swarm optimization (PSO) is a relatively new global optimization approach inspired by the social behavior of bird flocking and fish schooling. Although this approach has proven to provide excellent convergence rates in different optimization problems, it has seldom been applied to inverse geophysical problems. Until today, published geophysical applications mainly focus on finding an optimum solution for simple, 1D inverse problems. We have applied PSO-based optimization strategies to reconstruct 2D P-wave velocity fields from crosshole traveltime data sets. Our inversion strategy also includes generating and analyzing a representative ensemble of acceptable models, which allows us to appraise uncertainty and nonuniqueness issues. The potential of our strategy was tested on field data collected at a well-constrained test site in Horstwalde, Germany. At this field site, the shallow subsurface mainly consists of sand- and gravel-dominated glaciofluvial sediments, which, as known from several boreho...

[1]  K. Singha,et al.  Accounting for Tomographic Resolution in Estimating Hydrologic Properties from Geophysical Data , 2013 .

[2]  Michele Cercato,et al.  Global surface wave inversion with model constraints ‡ , 2011 .

[3]  H. Paasche,et al.  Zonal cooperative inversion of crosshole P-wave, S-wave, and georadar traveltime data sets , 2010 .

[4]  Fernando A. Monteiro Santos,et al.  Inversion of self-potential of idealized bodies' anomalies using particle swarm optimization , 2010, Comput. Geosci..

[5]  S. Srivastava,et al.  Inversion of the amplitude of the two‐dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique , 2010 .

[6]  Esperanza García Gonzalo,et al.  PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case , 2010 .

[7]  Peter Dietrich,et al.  Evaluation of Combined Direct‐Push Methods Used for Aquifer Model Generation , 2009, Ground water.

[8]  W. Rabbel,et al.  FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution reflection seismic and Scholte-wave dispersion analysis , 2009 .

[9]  Klaus Holliger,et al.  Simulated-annealing-based conditional simulation for the local-scale characterization of heterogeneous aquifers , 2009 .

[10]  P. Dietrich,et al.  Integrated analysis and interpretation of cross-hole P- and S-wave tomograms: a case study , 2009 .

[11]  H. Paasche,et al.  Detecting voids in masonry by cooperatively inverting P-wave and georadar traveltimes , 2008 .

[12]  Peter Dietrich,et al.  A Rapid Method for Hydraulic Profiling in Unconsolidated Formations , 2008, Ground water.

[13]  R. Shaw,et al.  Particle swarm optimization : A new tool to invert geophysical data , 2007 .

[14]  A. Green,et al.  Integration of diverse physical-property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses , 2006 .

[15]  J. Moret,et al.  Investigating the stratigraphy of an alluvial aquifer using crosswell seismic traveltime tomography , 2006 .

[16]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[17]  Mrinal K. Sen,et al.  Joint inversion of first arrival seismic travel-time and gravity data , 2005 .

[18]  Andrew Binley,et al.  Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution‐dependent limitations , 2005 .

[19]  Ying Rao,et al.  Crosshole seismic tomography: working solutions to issues in real data travel time inversion , 2005 .

[20]  Kamini Singha,et al.  A framework for inferring field‐scale rock physics relationships through numerical simulation , 2005 .

[21]  J. Tronicke,et al.  Quantitative integration of hydrogeophysical data: Conditional geostatistical simulation for characterizing heterogeneous alluvial aquifers , 2004 .

[22]  Mrinal K. Sen,et al.  Use of VFSA for resolution, sensitivity and uncertainty analysis in 1D DC resistivity and IP inversion , 2003 .

[23]  R. Luna,et al.  Crosshole seismic tomography and borehole logging for engineering site characterization in Sikeston, MO, USA , 2003 .

[24]  Georg Teutsch,et al.  Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology , 2003 .

[25]  Alan G. Green,et al.  Discrete tomography and joint inversion for loosely connected or unconnected physical properties: application to crosshole seismic and georadar data sets , 2003 .

[26]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[27]  P. Mal,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[28]  Brian J. Mailloux,et al.  Hydrogeological characterization of the south oyster bacterial transport site using geophysical data , 2001 .

[29]  D. Velis Traveltime inversion for 2-D anomaly structures , 2001 .

[30]  John E. Peterson,et al.  Crosswell seismic imaging in a contaminated basalt aquifer , 2001 .

[31]  J. Wong Crosshole seismic imaging for sulfide orebody delineation near Sudbury, Ontario, Canada , 2000 .

[32]  Steven M. Gorelick,et al.  Inferring the relation between seismic slowness and hydraulic conductivity in heterogeneous aquifers , 2000 .

[33]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[34]  F. Paillet,et al.  Well Logging for Physical Properties: A Handbook for Geophysicists, Geologists, and Engineers , 2000 .

[35]  Z. Wéber Seismic traveltime tomography: a simulated annealing approach , 2000 .

[36]  James W. Rector,et al.  Crosswell traveltime tomography in three dimensions , 1999 .

[37]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[38]  Subrata Chakraborty,et al.  Velocity inversion in cross-hole seismic tomography bycounter-propagation neural network, genetic algorithmand evolutionary programming techniques , 1999 .

[39]  J. Sethian,et al.  3-D traveltime computation using the fast marching method , 1999 .

[40]  G. Böhm,et al.  A geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity estimation , 1998 .

[41]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[42]  A. Green,et al.  Potential coordinate mislocations in crosshole tomography: Results from the Grimsel test site, Switzerland , 1997 .

[43]  Peter K. Robertson,et al.  Cone-penetration testing in geotechnical practice , 1997 .

[44]  J. Harris,et al.  Traveltime inversion for the geometry of aquifer lithologies , 1996 .

[45]  F. Boschetti,et al.  Inversion of seismic refraction data using genetic algorithms , 1996 .

[46]  D. Vasco,et al.  Nonuniqueness in traveltime tomography: Ensemble inference and cluster analysis , 1996 .

[47]  J. Schön,et al.  Physical Properties of Rocks: Fundamentals and Principles of Petrophysics , 1996 .

[48]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Mrinal K. Sen,et al.  2-D resistivity inversion using spline parameterization and simulated annealing , 1996 .

[50]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[51]  James W. Rector,et al.  Crosswell methods: Where are we, where are we going? , 1995 .

[52]  R. F. Ballard,et al.  Tunnel signature prediction for a cross‐borehole seismic survey , 1995 .

[53]  Tokua Yamamoto,et al.  Porosity, permeability, shear strength: Crosswell tomography below an iron foundry , 1994 .

[54]  J. Louie,et al.  Inversion of seismic reflection traveltimes using a nonlinear optimization scheme , 1993 .

[55]  Yoram Rubin,et al.  Mapping permeability in heterogeneous aquifers using hydrologic and seismic data , 1992 .

[56]  M. Anderson Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments , 1989 .

[57]  Frederick Mosteller,et al.  Understanding Robust and Exploratory Data Analysis. , 1983 .

[58]  A. P. Annan,et al.  Electromagnetic determination of soil water content: Measurements in coaxial transmission lines , 1980 .

[59]  Riccardo Poli,et al.  Analysis of the publications on the applications of particle swarm optimisation , 2008 .

[60]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[61]  Donald E. Grierson,et al.  Comparison among five evolutionary-based optimization algorithms , 2005, Adv. Eng. Informatics.

[62]  J. Kennedy,et al.  The Particle Swarm : Explosion , Stability , and Convergence in a Multi-Dimensional Complex Space , 2003 .

[63]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[64]  Sergey Fomel,et al.  A variational formulation of the fast marching eikonal solver , 2000 .

[65]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .