Biorefineries--multi product processes.

The development of biorefineries represents the key for access to an integrated production of food, feed, chemicals, materials, goods, and fuels of the future [1]. Biorefineries combine the necessary technologies of the biogenic raw materials with those of intermediates and final products. The main focus is directed at the precursors carbohydrates, lignin, oils, and proteins and the combination between biotechnological and chemical conversion of substances. Currently the lignocellulosic feedstock biorefinery, green biorefinery, whole corn biorefinery, and the so-called two-platform concept are favored in research, development, and industrial implementation.

[1]  J. Crosby Synthesis of optically active compounds: A large scale perspective , 1991 .

[2]  C. Rossell,et al.  Integrated production of biodegradable plastic, sugar and ethanol , 2001, Applied Microbiology and Biotechnology.

[3]  J. R. Frank,et al.  Technological and economic potential of poly(lactic acid) and lactic acid derivatives , 1995 .

[4]  N. W. Pirie,et al.  Leaf protein: its agronomy, preparation, quality and use, , 1971 .

[5]  R. Lynden-Bell,et al.  Solvation of small molecules in imidazolium ionic liquids: a simulation study , 2002 .

[6]  K. Melzoch,et al.  Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. , 1997, Journal of biotechnology.

[7]  K. Vorlop,et al.  Industrial bioconversion of renewable resources as an alternative to conventional chemistry , 2004, Applied Microbiology and Biotechnology.

[8]  Y. Koo,et al.  Recovery of l-(+)-lactic acid by anion exchange resin Amberlite IRA-400 , 2002 .

[9]  B. Kamm,et al.  Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis)--quantification of glucose. , 2006, Chemosphere.

[10]  K. Schügerl,et al.  Recovery of lactic acid from aqueous model solutions and fermentation broths , 1999 .

[11]  L. Dwiarti,et al.  Optimization and scale-up of L-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. , 2003, Journal of bioscience and bioengineering.

[12]  B. Kamm,et al.  Formation of aminium lactates in lactic acid fermentation. Fermentative production of 1,4‐piperazinium‐(L,L)‐dilactate and its use as a starting material for the synthesis of dilactide (Part 2) , 2000 .

[13]  J. Zeikus,et al.  Biotechnology of succinic acid production and markets for derived industrial products , 1999, Applied Microbiology and Biotechnology.

[14]  Jenna Piasecki,et al.  NYSERDA: New York State Energy Research and Development Authority , 2008 .

[15]  C. Webb,et al.  Developing a sustainable bioprocessing strategy based on a generic feedstock. , 2004, Advances in biochemical engineering/biotechnology.

[16]  Niels Bohrs,et al.  Manufacturing of Stabilised Brown Juice for L-lysine production - from University Lab Scale over Pilot Scale to Industrial Production. , 2004 .

[17]  Mathieu Bailly,et al.  Production of organic acids by bipolar electrodialysis: realizations and perspectives , 2002 .

[18]  P. Gruber,et al.  Polylactic Acid from Renewable Resources , 2008 .

[19]  H. Graham,et al.  Leaf Protein Concentrates , 1983 .

[20]  M. Fick,et al.  Lactic acid production by Bacillus coagulans—kinetic studies and optimization of culture medium for batch and continuous fermentations , 1999 .

[21]  C. Nolasco-Hipólito,et al.  Synchronized fresh cell bioreactor system for continuous L-(+)-lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch. , 2002, Journal of bioscience and bioengineering.

[22]  M. Pessarakli Handbook of Plant and Crop Physiology , 2001 .

[23]  Pauli Kiel,et al.  Integrated utilisation of green biomass in the green biorefinery , 2000 .

[24]  Y. Linko,et al.  Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch , 1996 .

[25]  H. Balmann,et al.  Nanofiltration of glucose and sodium lactate solutions: Variations of retention between single- and mixed-solute solutions , 2005 .

[26]  Jules Janick,et al.  Perspectives on new crops and new uses , 1999 .

[27]  R. M. Goodman Encyclopedia of Plant and Crop Science , 2004 .

[28]  Donald L. Van Dyne,et al.  A Strategy for Returning Agriculture and Rural America to Long-Term Full Employment Using Biomass Refineries , 1999 .

[29]  Hans Zoebelein,et al.  Dictionary of renewable resources. , 2001 .

[30]  Guido Zacchi,et al.  An economic evaluation of the fermentative production of lactic acid from wheat flour , 2000 .

[31]  S. Rakshit,et al.  Direct fermentative production of lactic acid on cassava and other starch substrates , 1997, Biotechnology Letters.

[32]  Michael Narodoslawsky,et al.  Grüne Bioraffinerie Brandenburg : Beiträge zur Produkt- und Technologieentwicklung sowie Bewertung , 2000 .

[33]  J. Connell Green crop fractionation , 1979, Nature.

[34]  Don-Hee Park,et al.  Biotechnological production of l(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis , 2004, Biotechnology Letters.

[35]  Birgit Kamm,et al.  Biorefineries – Industrial Processes and Products , 2005 .

[36]  C. Berthold,et al.  Biotechnological Conversion of Sugar and Starchy Crops into Lactic Acid , 1998 .

[37]  J. Parajó,et al.  Cogeneration of cellobiose and glucose from pretreated wood and bioconversion to lactic acid: a kinetic study. , 1999, Journal of bioscience and bioengineering.

[38]  J. Domínguez,et al.  Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. , 2004, Journal of agricultural and food chemistry.

[39]  C. Soccol,et al.  Experimental design to enhance the production of l-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation , 1999 .

[40]  G. Campbell,et al.  Cereals: Novel Uses and Processes , 1997 .

[41]  T. Shamala,et al.  Degradation of starchy substrates by a crude enzyme preparation and utilization of the hydrolysates for lactic fermentation , 1987 .

[42]  M. Taniguchi,et al.  Production of l-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria , 2004, Applied Microbiology and Biotechnology.

[43]  H. V. Bekkum,et al.  From fossil to green , 1999 .

[44]  F. Blanchard,et al.  The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. , 2001, Bioresource technology.

[45]  Norman Wingate Pirie,et al.  Leaf Protein: And its By-products in Human and Animal Nutrition , 1987 .

[46]  R. Gross,et al.  Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. , 1990, Advances in biochemical engineering/biotechnology.

[47]  W. Kaminsky Research in Thermochemical Biomass Conversion. Herausgeg. von A. V. Bridgwater und J. L. Kuester. Elsevier Applied Science, London - New York 1988. XIV, 1193 S., zahlr. Abb. u. Tab., geb., £ 99,-. , 1990 .

[48]  Anthony V. Bridgwater,et al.  Research in thermochemical biomass conversion. , 1988 .

[49]  Andrew J. Hacking,et al.  Economic aspects of biotechnology , 1986 .

[50]  Akkihebbal K. Suresh,et al.  Simultaneous saccharification and fermentation of starch to lactic acid , 1999 .

[51]  J. Bozell Alternative Feedstocks for Bioprocessing , 2004 .

[52]  B. Kamm,et al.  Principles of biorefineries , 2004, Applied Microbiology and Biotechnology.

[53]  David E. Ramey,et al.  A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution , 2004, Applied biochemistry and biotechnology.

[54]  Carlos Eduardo Vaz Rossell,et al.  Sugar‐based Biorefinery – Technology for Integrated Production of Poly(3‐hydroxybutyrate), Sugar, and Ethanol , 2008 .

[55]  Soon Ho Hong,et al.  Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens , 2004, Biotechnology Letters.

[56]  K. Schügerl,et al.  Comparison of the Production of Lactic Acid by Three Different Lactobacilli and its Recovery by Extraction and Electrodialysis , 1995 .

[57]  M. Vert,et al.  Optically active poly (\-malic-acid) , 1985 .

[58]  Y. Kimura,et al.  Production of D-lactic acid by bacterial fermentation of rice starch. , 2004, Macromolecular bioscience.

[59]  H. Chang,et al.  High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. , 2001, Biotechnology and bioengineering.

[60]  D. Özer,et al.  Effect of different carbon sources on l(+) -lactic acid production by Rhizopus oryzae , 2004 .

[61]  M. Gailfuss Das Gesetz für den Vorrang erneuerbarer Energien , 2000 .

[62]  Karel Grohmann,et al.  Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes , 1997 .

[63]  E. Park,et al.  Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae. , 2004, Bioresource technology.

[64]  Hwa-Won Ryu,et al.  Lactic acid production from agricultural resources as cheap raw materials. , 2005, Bioresource technology.

[65]  Johnathan E. Holladay,et al.  Succinic Acid-A Model Building Block for Chemical Production from Renewable Resources , 2008 .

[66]  E. Galindo,et al.  Production of 6-pentyl-α-pyrone by Trichoderma harzianum cultured in unbaffled and baffled shake flasks , 2004 .

[67]  R. H. Leonard Levulinic Acid as a Basic Chemical Raw Material , 1956 .

[68]  Stanislaw Penczek,et al.  Polilaktyd [poli(kwas mlekowy)]: synteza, właściwości i zastosowania , 2003 .

[69]  Robert A. Meyers,et al.  Encyclopedia of physical science and technology , 1987 .

[70]  B. Kamm,et al.  Formation of aminium lactates in lactic acid fermentation preparation and characterization of 1,4‐piperazinium‐(L,L)‐dilactate obtained from L(+)‐lactic acid (part I) , 1997 .

[71]  David A. Glassner,et al.  Applications of life cycle assessment to NatureWorks polylactide (PLA) production , 2003 .

[72]  Bryce J. Stokes,et al.  Biomass as Feedstock for A Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply , 2005 .